Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding worms to decode regeneration

06.05.2013
Dr. Siegfried Schloissnig is head of the newly established Computational Biology junior research group at HITS.

Prof. Eugene “Gene” Myers, one of the pioneers in bioinformatics, is affiliated with the group as a mentor. Together with his laboratory at the Max Planck Center for Systems Biology in Dresden, the junior group will decipher and compare the genetic codes of several flatworm species.

Flatworms are masters of regeneration, and are, therefore, interesting for scientists: If they are cut in two pieces, each half will develop into a new worm. By comparing the genetic material, researchers hope to gain new insights into regeneration of tissue that could have a huge impact on medicine.

A new junior research group for Computational Biology (CBI) has been established at Heidelberg Institute for Theoretical Studies (HITS). It complements the work of the other six research groups, which carry out basic research in different fields of science. The focus lies on the processing and structuring of large data volumes. The leader of the new group is Dr. Siegfried Schloissnig, a 33-year-old Computer Scientist with a Doctorate in Human Biology, who previously worked as a PostDoc at the European Molecular Biology Laboratory (EMBL). A PostDoc and two PhD students will work under his leadership in Heidelberg.

The mentor: a pioneer in bioinformatics
Prof. Eugene “Gene” Myers, one of the pioneers in bioinformatics, is affiliated with the group as a mentor. The U.S. American developed the BLAST, the most widely-used search program in molecular biology, and wrote programs for whole-genome shotgun assembly that significantly contributed to the success of the Human Genome Project. The human genome was completely deciphered in the course of this project. Since June 2012, Gene Myers has been working as the director and “Klaus Tschira Chair” at the Center for Systems Biology in Dresden. The new center was established by the Max Planck Society in collaboration with the Klaus Tschira Foundation and the Max Planck Foundation. The center, which is a joint project of the Max Planck Institutes for Molecular Cell Biology and Genetics and for the Physics of Complex Systems, is set up to develop methods to better understand the cellular processes during the growth of an organism.

New approaches to the de novo assembly

The new junior research group at HITS will also work on these objectives in collaboration with Gene Myers’ laboratory in Dresden and the recently established Dresden Genome Center. Together with his group, Siegfried Schloissnig will develop new approaches to the so-called de novo assembly, which is the reconstruction of genome sequences by means of DNA sequencers and bioinformatic methods. In the course of sequencing by standard methods, DNA is copied multiple times. These copies are randomly split up into numerous small fragments. These fragments are examined for overlaps by means of bioinformatic methods and are subsequently reassembled. The smaller the fragments and the more complex the genome of interest, the more complicated is the problem. The situation becomes even more difficult, when no comparable genome is available and researchers have to assemble the genome de novo, i.e. anew. This is exactly the case with flatworms, whose genetic codes the HITS junior group plans to decipher.

The jigsaw puzzle of flatworms

The scientists thus ventured into difficult terrain: Until now the genomes of flatworms have been considered indecipherable because of their complex structure. “Two-thirds of the worm genome keep recurring,” explains Siegfried Schloissnig. “It´s like a jigsaw puzzle. And two-thirds of it are nearly identical white particles.” Together with the laboratory in Dresden, he will, for the first time, compare the currently available gene sequences of 12 worm species. The computational analysis will be performed at HITS. By means of new algorithms Dr. Schloissnig intends to piece together the DNA jigsaw puzzle of flatworms. Flatworms are masters of regeneration, and are, therefore, interesting for scientists: If they are cut in two pieces, each half will develop into a new worm. No animal is able to do it faster and more efficiently. “We’ll begin with studying Schmidtea mediterranea, which is the most interesting flatworm for Regenerative Medicine”, says Siegfried Schloissnig, “and then proceed with other species of this phylum.” By comparing the genetic material researchers hope to gain new insights into regeneration of tissue that could have a huge impact on medicine, for example, help developing methods to replace inoperative cells, tissues and organs with cultivated tissues or to stimulate endogenous regeneration and repair processes.

Computational Biology is the third research group at HITS, which uses mathematical methods and computer simulations to solve biological and medical problems. This year two more research groups will be established at the institute: The first one will deal with theoretical astrophysics and the second one with computational statistics. By 2014, HITS plans to comprise ten research groups as well as further research units such as junior groups and associated researchers.
Press Contact:
Dr. Peter Saueressig
Presse- und Öffentlichkeitsarbeit
HITS Heidelberger Institut für Theoretische Studien
Tel: +49-6221-533-245
Fax: +49-6221-533-298
peter.saueressig@h-its.org
http://www.h-its.org

Scientific Contact:
Dr. Siegfried Schloissnig
Junior Group Computational Biology
HITS Heidelberger Institut für Theoretische Studien
Tel: +49-6221-533-307
Fax: +49-6221-533-298
siegfried.schloissnig@h-its.org
http://www.h-its.org

HITS
The Heidelberg Institute for Theoretical Studies is a private non-profit research facility established by Klaus Tschira, one of the founders of the SAP AG software company. As a research institute of the Klaus Tschira Foundation, HITS conducts basic research with the focus on processing and structuring large volumes of data. The research fields range from astrophysics to cell biology. The institute is located at the campus in Schloss-Wolfsbrunnenweg.

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org
http://www.h-its.org/english/press/cbi.php?we_objectID=978&pid=505
http://www.mpi-cbg.de/research/research-groups/gene-myers/group-leader.html

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>