Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding vaccination: Mayo researchers reveal genetic underpinnings of response to measles vaccine

23.09.2011
Researchers at Mayo Clinic are hacking the genetic code that controls the human response to disease vaccination, and they are using this new cipher to answer many of the deep-seated questions that plague vaccinology, including why patients respond so differently to identical vaccines and how to minimize the side effects to vaccination.

Led by Gregory Poland, M.D., researchers in Mayo's Vaccine Research Group are publishing results of two genetic studies that identify mutations linked to immune response to the measles vaccine. They appear in the journal Vaccine.

"We are trying to understand, to the maximum extent possible, how a person's individual genetic makeup affects response to vaccination," says Dr. Poland.

These and similar studies will likely allow physicians to prescribe appropriate doses and timing of vaccines based on routine genetic screening blood tests in the near future. Longer-reaching implications of the vaccine group's work include the development of more effective vaccines and, perhaps someday, the ability to construct personalized vaccines.

"Vaccination is the single most important and far-reaching practice in medicine. By the time a child enters school in the United States, they have received upwards of 20 shots," says Dr. Poland. "In no other field of medicine do we do exactly the same thing to everyone — and we do it everywhere in the world."

Doctors and epidemiologists have long been puzzled about the genetic underpinnings to the fact that up to 10 percent of recipients fail to respond to the first dose of the measles vaccine, while another 10 percent generate extremely high levels of measles antibodies. The remaining 80 percent fall somewhere in the middle.

"We have found that two doses of the vaccine seem to be sufficient to immunize the vast majority of the population against measles, so we do it to everybody even though it's not technically necessary," says Dr. Poland. "If we could tell, based on a genetic test of every patient, who would need one dose and who might need two or three, imagine the implications not only for measles vaccines, but for every vaccine."

Millions of dollars could be saved by avoiding additional and unnecessary vaccine doses, not to mention the pain and suffering that could be spared by administering to young children the minimum number of shots necessary.

Early results published in Vaccine contain an exhaustive statistical analysis of the genes coding for the Human Leukocyte Antigen (HLA) system and other known cytokine/cytokine receptor genes. Dr. Poland's team was the first to single out all DNA base-pair mutations in these genes that have a measurable effect on the immune system's response to measles vaccination.

Any mutations found to play a role in the immune system response to the measles vaccine were identified and cataloged with the study subject's corresponding race.

Called SNPs (pronounced "snips"), these tiny genetic mutations represent the smallest possible change to a person's genetic code and offer clues to explaining why children of some racial and ethnic groups respond better to vaccination than other groups.

Ultimately, Dr. Poland and his team seek to assemble a comprehensive matrix of all the genetic mutations that affect immune response to vaccination on all of the roughly 30,000 human protein-coding genes. Such a library could direct physicians toward predicting exactly how individuals will respond to different vaccines.

"Imagine setting up an array of dominoes the size of a small city, and then depending on where you knock one over, predicting how the rest will fall," says Dr. Poland. "That is what we are trying to do in understanding how single genes, and networks of genes, control and determine our immune responses to vaccines — and, hence, whether we are protected or not."

Funding for these studies comes from the National Institutes of Health

Robert Jacobson, M.D., Inna Ovsyannikova, Ph.D., Robert Vierkant, V. Shane Pankratz, Ph.D. and Dr. Poland, all of Mayo Clinic, authored the study Human Leukocyte Antigen Associations with Humoral and Cellular Immunity Following a Second Dose of Measles-Containing Vaccine: Persistence, Dampening, and Extinction of Associations Found After a First Dose. Iana Haralambieva, M.D., Ph.D., Richard Kennedy, Ph.D., Dr. Jacobson, Dr. Ovsyannikova, Vierkant, Dr. Pankratz, and Dr. Poland, all of Mayo Clinic, authored the study Associations between Single Nucleotide Polymorphisms and Haplotypes in Cytokine and Cytokine Receptor Genes and Immunity to Measles Vaccination.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit http://www.mayoclinic.org/about and www.mayoclinic.org/news.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>