Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding 'sweet codes' that determine protein fates

15.09.2014

Depicting the dynamic structures of sugar chains by an NMR-validated simulation

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of the Institute for Molecular Science, National Institutes of Natural Sciences developed a methodology for quantitatively describing the dynamic behaviors of complicated sugar chains in solution at atomic resolution by combining a sophisticated NMR spectroscopic approach with an ingenious molecular dynamics simulation technique. This study has just been published in Angewandte Chemie International Edition (published online on September 4, 2014), a scientific journal that is published on behalf of the German Chemical Society.


Here are movies of dynamic behavior of a sugar chain on the basis of NMR-validated simulations. This chain has a particular sugar (green circle).

Credit: © Koichi Kato


Here are movies of dynamic behavior of a sugar chains on the basis of NMR-validated simulations. This chain does not have a particular sugar.

Credit: © Koichi Kato

The sugar chains are flexible accessories decorating the surface of proteins. These variable accessories actually mediate protein-protein communication and even determine the fates of the protein. In other words, the sugar chains serve as transformable "code" that governs the protein's action in our body.

For example, it has been revealed that particular sugar chains modifying lipids on cell surfaces offer acceptor sites for viral infections and trigger conformational changes of proteins involved in neurodegenerative disorders including Alzheimer's disease. Hence, decoding the sugar codes is desired not only for better understanding the molecular mechanisms behind a variety of biological processes but also for designing new drugs targeting these processes. However, conformational characterization of the sugar chains has been hampered by their dynamic properties.

Many experimentalists and theorists have taken on the challenge to solve this problem. NMR spectroscopy is one of the most promising experimental approaches for conformational analyses of the sugar chains because of its ability to determine geometrical arrangements of the atoms constituting biomolecules in solution.

However, if a biomolecule undergoes rapid motion as in the case of the sugar chains, NMR provides information averaged over all its possible conformational snapshots. By contrast, a molecular dynamics simulation can provide a movie that describes the dynamic behaviors of sugar chains. However, the simulation results should be experimentally validated to guarantee their accuracy.

Kato's research group successfully combined these two complementary approaches and thereby captured distinct conformational snapshots of two very similar sugar chains in dynamic motion. This success was achieved on the basis of several key breakthrough techniques.

Firstly, the group employed genetically engineered yeast cells for production of homogeneous oligosaccharides in sufficient quantity with stable isotope labeling, which is necessary for detailed NMR analyses. Secondly, a paramagnetic probe was introduced specifically at one end of the oligosaccharides in order to obtain atomic-distance information. Thirdly, they used the high-field NMR spectrometers and the supercomputer facility operated by the Institute for Molecular Science.

As Professor Kato notes, "This success enables us quantitative and highly sensitive characterization of minor but biologically relevant conformational species of sugar chains and will open the door for observing the dynamic behavior of flexible biomolecules as potential drug targets".

Koichi Kato | Eurek Alert!
Further information:
http://www.nins.jp/english/

Further reports about: Decoding Molecular NMR analyses biomolecules proteins snapshots spectrometers sugar sweet technique

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>