Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding the soybean genome

15.02.2010
The newly sequenced genome of the soybean could allow for the development of hardier plants

Scientists have sequenced the genome of the soybean plant, Glycine max, an important agricultural crop. As reported in the journal Nature1, the sequencing was accomplished through collaborative work between scientists in the United States and at the RIKEN Plant Science Center in Yokohama.

Soybeans are an important food source for humans, since they are used to produce foods such as soy sauce and tofu, as well as to make vegetable oil for cooking. But soybeans also are an important component of animal feed throughout the world, and play a key ecological role in taking nitrogen from the air and putting it back into the soil.

From their analysis of the 20 chromosomes of the soybean plant, the researchers predict that there are over 46,000 genes, more than double the number of genes in humans. Consistent with the known genome duplication of the soybean at two different points in its evolution, the geneticists identified many blocks of genes, corresponding to three-quarters of the soybean’s 46,000 genes. These blocks were found more than once across the genome, including across different chromosomes.

The existence of multiple copies of a gene within a genome may allow for genetic diversity if some of those copies mutate in such a way that they take on novel functions, or so that their expression can be controlled separately under different environmental conditions. As an example of this, the researchers found double the number of fatty acid synthesis genes in the soybean genome than in Arabidopsis, a flowering plant that has not undergone genome expansions. This may explain why soybeans are such a good source of cooking oil, while Arabidopsis is not.

As soybean plants are sensitive to disease, such as Asian soybean rust, which lead to losses in agricultural yield that adversely affect the world food supply, farmers need disease-resistant varieties of this important crop. Soybean varieties that have high nutritional content, hardier seeds and plants, and easier reproduction would also be agriculturally attractive.

“The genome sequence opens the door to crop improvements that are needed for sustainable human and animal food production, energy production and environmental balance in agriculture worldwide,” write the authors.

The corresponding author for this highlight is based at the Integrated Genome Informatics Research Unit, RIKEN Plant Science Center

Journal information

1. Schmutz, J., Cannon, S.B., Schlueter, J., Ma., J. Mitros, T., Nelson, W.,Hyten, D.L. Song, Q., Thelen, J.J. Cheng, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6185
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>