Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding the soybean genome

15.02.2010
The newly sequenced genome of the soybean could allow for the development of hardier plants

Scientists have sequenced the genome of the soybean plant, Glycine max, an important agricultural crop. As reported in the journal Nature1, the sequencing was accomplished through collaborative work between scientists in the United States and at the RIKEN Plant Science Center in Yokohama.

Soybeans are an important food source for humans, since they are used to produce foods such as soy sauce and tofu, as well as to make vegetable oil for cooking. But soybeans also are an important component of animal feed throughout the world, and play a key ecological role in taking nitrogen from the air and putting it back into the soil.

From their analysis of the 20 chromosomes of the soybean plant, the researchers predict that there are over 46,000 genes, more than double the number of genes in humans. Consistent with the known genome duplication of the soybean at two different points in its evolution, the geneticists identified many blocks of genes, corresponding to three-quarters of the soybean’s 46,000 genes. These blocks were found more than once across the genome, including across different chromosomes.

The existence of multiple copies of a gene within a genome may allow for genetic diversity if some of those copies mutate in such a way that they take on novel functions, or so that their expression can be controlled separately under different environmental conditions. As an example of this, the researchers found double the number of fatty acid synthesis genes in the soybean genome than in Arabidopsis, a flowering plant that has not undergone genome expansions. This may explain why soybeans are such a good source of cooking oil, while Arabidopsis is not.

As soybean plants are sensitive to disease, such as Asian soybean rust, which lead to losses in agricultural yield that adversely affect the world food supply, farmers need disease-resistant varieties of this important crop. Soybean varieties that have high nutritional content, hardier seeds and plants, and easier reproduction would also be agriculturally attractive.

“The genome sequence opens the door to crop improvements that are needed for sustainable human and animal food production, energy production and environmental balance in agriculture worldwide,” write the authors.

The corresponding author for this highlight is based at the Integrated Genome Informatics Research Unit, RIKEN Plant Science Center

Journal information

1. Schmutz, J., Cannon, S.B., Schlueter, J., Ma., J. Mitros, T., Nelson, W.,Hyten, D.L. Song, Q., Thelen, J.J. Cheng, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6185
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>