Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding the soybean genome

15.02.2010
The newly sequenced genome of the soybean could allow for the development of hardier plants

Scientists have sequenced the genome of the soybean plant, Glycine max, an important agricultural crop. As reported in the journal Nature1, the sequencing was accomplished through collaborative work between scientists in the United States and at the RIKEN Plant Science Center in Yokohama.

Soybeans are an important food source for humans, since they are used to produce foods such as soy sauce and tofu, as well as to make vegetable oil for cooking. But soybeans also are an important component of animal feed throughout the world, and play a key ecological role in taking nitrogen from the air and putting it back into the soil.

From their analysis of the 20 chromosomes of the soybean plant, the researchers predict that there are over 46,000 genes, more than double the number of genes in humans. Consistent with the known genome duplication of the soybean at two different points in its evolution, the geneticists identified many blocks of genes, corresponding to three-quarters of the soybean’s 46,000 genes. These blocks were found more than once across the genome, including across different chromosomes.

The existence of multiple copies of a gene within a genome may allow for genetic diversity if some of those copies mutate in such a way that they take on novel functions, or so that their expression can be controlled separately under different environmental conditions. As an example of this, the researchers found double the number of fatty acid synthesis genes in the soybean genome than in Arabidopsis, a flowering plant that has not undergone genome expansions. This may explain why soybeans are such a good source of cooking oil, while Arabidopsis is not.

As soybean plants are sensitive to disease, such as Asian soybean rust, which lead to losses in agricultural yield that adversely affect the world food supply, farmers need disease-resistant varieties of this important crop. Soybean varieties that have high nutritional content, hardier seeds and plants, and easier reproduction would also be agriculturally attractive.

“The genome sequence opens the door to crop improvements that are needed for sustainable human and animal food production, energy production and environmental balance in agriculture worldwide,” write the authors.

The corresponding author for this highlight is based at the Integrated Genome Informatics Research Unit, RIKEN Plant Science Center

Journal information

1. Schmutz, J., Cannon, S.B., Schlueter, J., Ma., J. Mitros, T., Nelson, W.,Hyten, D.L. Song, Q., Thelen, J.J. Cheng, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6185
http://www.researchsea.com

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>