Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Decoding of Slowness

19.07.2011
Zoologists of the University Jena find out how Sloths perfectioned energy saving

They live their lives upside down; instead of defying the force of gravity in an upright position, sloths spend most of their lives hanging in trees upside down. If they have to move, they do so only slowly. Very slowly. But why are sloths so ‘lazy‘? And how has the locomotive system of these outsiders adapted to their unhurried lifestyle in the course of evolution? Zoologists of the Friedrich Schiller University Jena (Germany) have looked into the matter comprehensively.

“To our great surprise the locomotion of the sloths is basically not so different from the locomotion of other mammals, like monkeys for instance, which instead of hanging from tree branches, balance along them”, says Dr. John Nyakatura. In his doctoral thesis at the Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum the evolutionary biologist analyzed the locomotion of sloths with X-ray video equipment. That was not so easy at the beginning, as the first sloth stepping in front of the camera for the Jena scientist simply refused to work. ”Mats, the sloth, just didn’t want to co-operate”, Nyakatura remembers, smiling. Therefore it was given to a zoo and made headlines around the globe as the ‘laziest animal in the world’.

In comparison, the two-toed sloths Julius, Evita and Lisa appeared to be more co-operative. They brachiated along the provided pole in the X-ray tube. “The position of their legs and the bending of their joints matches exactly those of other mammals in the process of walking“, Nyakatura explains. Hence one could imagine the locomotion of sloths actually as ‘walking’ under a tree. Just much slower than other quadrupeds.

However, the evolutionary biologist found distinct differences in the anatomical structure of the animals. “Sloths have very long arms, but only very short shoulder blades (scapulae), being able to move freely on top of a narrow, rounded chest. This lends them a maximum radius of movement“. Moreover a dislocation of certain muscular contact points occurred which enabled them to keep their own body weight with a minimum of energy input. “In the evolution of the sloths the adaptation to the slow, energy saving way of movement occurred solely through their anatomy”, John Nyakatura sums up. What was even more astonishing, this principle developed in two cases independent of each other: in the two-toed sloths and in the three-toed sloths. But although the outward appearance and lifestyle of the animals may lead to the assumption of them being related to each other, these two families are, from an evolutionary point of view, only distant relations.

“With their mode of life the sloths are filling an ecological niche”, adds Prof. Dr. Martin S. Fischer, who oversaw John Nyakatura’s doctoral thesis. “Sloths lead their lives in energy saving mode”. Their usage of energy saving food in connection with an unobtrusive lifestyle turns them into complete ‘models of energy saving’ among the mammals, according to the Jena Professor of systematic zoology and evolutionary biology. And this was a well-known recipe for success – completely unrelated to ‘laziness’.

Meanwhile John Nyakatura and his colleagues are not analyzing sloths any more – those have returned to the Zoo in Dortmund. Now the Jena researchers are applying themselves to the movement of birds.

Contact details:
Dr. John Nyakatura
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstrasse 1
D-07743 Jena
Phone: ++49 3641 949183
Email: john.nyakatura[at]uni-jena.de

Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>