Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Decoding of Slowness

19.07.2011
Zoologists of the University Jena find out how Sloths perfectioned energy saving

They live their lives upside down; instead of defying the force of gravity in an upright position, sloths spend most of their lives hanging in trees upside down. If they have to move, they do so only slowly. Very slowly. But why are sloths so ‘lazy‘? And how has the locomotive system of these outsiders adapted to their unhurried lifestyle in the course of evolution? Zoologists of the Friedrich Schiller University Jena (Germany) have looked into the matter comprehensively.

“To our great surprise the locomotion of the sloths is basically not so different from the locomotion of other mammals, like monkeys for instance, which instead of hanging from tree branches, balance along them”, says Dr. John Nyakatura. In his doctoral thesis at the Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum the evolutionary biologist analyzed the locomotion of sloths with X-ray video equipment. That was not so easy at the beginning, as the first sloth stepping in front of the camera for the Jena scientist simply refused to work. ”Mats, the sloth, just didn’t want to co-operate”, Nyakatura remembers, smiling. Therefore it was given to a zoo and made headlines around the globe as the ‘laziest animal in the world’.

In comparison, the two-toed sloths Julius, Evita and Lisa appeared to be more co-operative. They brachiated along the provided pole in the X-ray tube. “The position of their legs and the bending of their joints matches exactly those of other mammals in the process of walking“, Nyakatura explains. Hence one could imagine the locomotion of sloths actually as ‘walking’ under a tree. Just much slower than other quadrupeds.

However, the evolutionary biologist found distinct differences in the anatomical structure of the animals. “Sloths have very long arms, but only very short shoulder blades (scapulae), being able to move freely on top of a narrow, rounded chest. This lends them a maximum radius of movement“. Moreover a dislocation of certain muscular contact points occurred which enabled them to keep their own body weight with a minimum of energy input. “In the evolution of the sloths the adaptation to the slow, energy saving way of movement occurred solely through their anatomy”, John Nyakatura sums up. What was even more astonishing, this principle developed in two cases independent of each other: in the two-toed sloths and in the three-toed sloths. But although the outward appearance and lifestyle of the animals may lead to the assumption of them being related to each other, these two families are, from an evolutionary point of view, only distant relations.

“With their mode of life the sloths are filling an ecological niche”, adds Prof. Dr. Martin S. Fischer, who oversaw John Nyakatura’s doctoral thesis. “Sloths lead their lives in energy saving mode”. Their usage of energy saving food in connection with an unobtrusive lifestyle turns them into complete ‘models of energy saving’ among the mammals, according to the Jena Professor of systematic zoology and evolutionary biology. And this was a well-known recipe for success – completely unrelated to ‘laziness’.

Meanwhile John Nyakatura and his colleagues are not analyzing sloths any more – those have returned to the Zoo in Dortmund. Now the Jena researchers are applying themselves to the movement of birds.

Contact details:
Dr. John Nyakatura
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstrasse 1
D-07743 Jena
Phone: ++49 3641 949183
Email: john.nyakatura[at]uni-jena.de

Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>