Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoded: DNA of blood-sucking worm that infects world's poor

20.01.2014
Going barefoot in parts of Africa, Asia and South America contributes to hookworm infections, which afflict an estimated 700 million of the world's poor.

The parasitic worm lives in the soil and enters the body through the feet. By feeding on victims' blood, the worms cause anemia and, in children, stunted growth and learning problems.


Researchers have decoded the genome of the hookworm, Necator americanus, finding clues to how it infects and survives in humans and to aid in development of new therapies. An estimated 700 million people worldwide are infected with hookworms, which feed on blood, causing anemia and, in children, stunted growth and learning problems.

Credit: Peter Durbin

Now, researchers at Washington University School of Medicine in St. Louis have decoded the genome of the hookworm, Necator americanus, finding clues to how it infects and survives in humans and to aid in development of new therapies to combat hookworm disease.

The research is published Jan. 19 in Nature Genetics.

"We now have a more complete picture of just how this worm invades the body, begins feeding on the blood and successfully evades the host immune defenses," said senior author Makedonka Mitreva, PhD, assistant professor of medicine and of genetics and a member of The Genome Institute at the School of Medicine. "This information will accelerate development of new diagnostic tools and vaccines against the infection."

Necator americanus causes about 85 percent of human hookworm infections, which are not usually fatal. However, in pregnant women, the worm can cause severe anemia, leading to maternal deaths and low birth weights that contribute to newborn deaths.

The deworming drug albendazole typically is given as part of mass treatment programs in areas with endemic infection, but its repeated and excessive use is leading to treatment failures and drug resistance in some regions, Mitreva said.

Hookworms are common in areas of extreme poverty that lack indoor plumbing. The worm's eggs are excreted in the feces of infected individuals, contaminating the soil. After the eggs hatch, the immature worms, called larvae, molt twice and enter the body through the feet. The worms travel through the bloodstream to the lungs, where they are coughed up and then swallowed, making their way to the small intestine. It is there that the worms mature and begin feeding on the blood.

As part of the new research, the scientists took a multipronged approach to understand different aspects of how the hookworm invades the body, feeds on the blood and evades the host's immune system.

Decoding the worm's genome allowed the researchers to discover suites of genes that orchestrate each of these processes and to identify specific targets that may be vulnerable to vaccines or new drug treatments.

"We also prioritized those drug targets so that scientists can quickly follow up on the ones that appear to be most promising," Mitreva said.

While causing significant illness in developing countries, hookworms are garnering attention in the United States and other industrial countries for their therapeutic potential in the treatment of autoimmune conditions, such as inflammatory bowel disease, multiple sclerosis, asthma and even allergies.

As part of their research, the scientists identified a group of molecules that appears to protect the worm from detection by the host immune system.

Hookworms evade notice by suppressing molecules that promote inflammation. This same approach may prove valuable in the treatment of autoimmune conditions.

"It is our hope that the new research can be used as a springboard not just to control hookworm infections but to identify anti-inflammatory molecules that have the potential to advance new therapies for autoimmune and allergic diseases," Mitreva said.

The research is funded by the National Institutes of Health (NIH), the Australian Research Council and the National Health and Medical Research Council.

Tang YT, Gao X, Loukas A, Mitreva M. et al. Genome of the human hookworm Necator americanus. Nature Genetics. Jan. 19, 2014.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>