Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decision-making in the fly brain

21.08.2015

When food smells simultaneously appealing and repulsive, the learning centre aids decision-making

For most of us, a freshly brewed cup of coffee smells wonderful. However, individual components that make up the fragrance of coffee can be extremely repulsive in isolation or in a different combination. The brain therefore relativizes and evaluates the individual components of a fragrance. Only then is an informed decision possible as to whether an odour and its source are “good” or “bad”. Scientists from the Max Planck Institute of Neurobiology in Martinsried have discovered how conflicting smells are processed in the mushroom body of the brain of the fruit fly. The results assign a new function to this brain region and show that sensory stimuli are evaluated in a situation-dependent context. In this way the insects are able to make an appropriate decision on the spur of the moment.


Nerve cells that use dopamine as a neurotransmitter (green) enable hungry flies to ignore danger signs and modulate their innate behaviour.

© MPI of Neurobiology/ Friedrich

Most sensory impressions are complex. For example, a fragrant substance usually appears in combination with many other odours - like the smell of the aforementioned cup of coffee, which consists of over 800 individual odours, including some unpleasant ones. For the fruit fly Drosophila, the smell of carbon dioxide (CO2) is repellent. Among other things, the gas is released by stressed flies to warn other members of the species. When the insects smell CO2 an innate flight response is triggered. However, CO2 is also produced by overripe fruit – a coveted source of food for many insects. Foraging flies must therefore be able to ignore their innate aversion to CO2 in instances where the gas is present in combination with food odours. It is still poorly understood how the brain compares individual olfactory sensations and classifies them according to the situation at hand in order to reach a sensible decision (here: food or danger).

“The opposing significance of CO2 for fruit flies is an ideal starting point to explore how the brain correctly evaluates individual sensory impressions depending on the situation,” says Ilona Grunwald Kadow. Together with her team at the Max Planck Institute of Neurobiology, she studies how the brain processes odours and makes decisions based on the results. The scientists have now been able to show that complex or opposing sensory information is processed in the mushroom body. Until now, this brain area was thought to be a centre for learning and memory storage. The new results show that the mushroom body has an additional function: it evaluates sensory impressions independently of learned content and memory to allow instantaneous decisions.

The scientists were able to show that CO2 activates neurons in the neural network that includes the mushroom body. Those neurons, in turn, trigger the flies’ flight behaviour. However, if CO2 occurs along with food odours, the food odour stimulates neurons within the mushroom body network that release the neurotransmitter dopamine. Dopamine occurs in many species, including humans, in connection with positive values. When food smells are present along with CO2, these dopaminergic neurons in fruit flies transmit this information to the mushroom body, where they suppress the innate CO2 response by inhibiting “avoidance neurons”.

“Interestingly, the experience that CO2 frequently occurs together with food odours does not cause the insects to lose their aversion to CO2 forever,” says Grunwald Kadow. When the information about the simultaneous occurrence of CO2 and food odours is transmitted to the “learning centre” in the mushroom body, an immediate change of behaviour occurs, but not a permanent change with regard to the negative evaluation of CO2. This could apply to other sensory impressions as well, such as vision. The researchers speculate that the absence of a permanent change in behaviour could be vital in many situations. The smell of predators, for example, triggers an instinctive fear in humans. We do not lose this fear, even after experiencing caged predators and their smell at a zoo. The human brain therefore also appears to compare and draw different conclusions depending on the circumstances.


Contact

Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514

Email: merker@neuro.mpg.de


Dr. Ilona Grunwald Kadow
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3159

Fax: +49 89 8578-3152

Email: ikadow@neuro.mpg.de


Original publication
Laurence P.C. Lewis, K.P. Siju, Yoshinori Aso, Anja B. Friedrich, Alexander J.B. Bulteel, Gerald M. Rubin, Ilona C. Grunwald Kadow

A higher brain circuit for immediate integration of conflicting sensory information in Drosophila

Current Biology, online 20 August, 2015

Dr. Stefanie Merker | Max Planck Institute of Neurobiology, Martinsried

More articles from Life Sciences:

nachricht Bodyguards in the gut have a chemical weapon
20.01.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>