Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decision-making in the fly brain

21.08.2015

When food smells simultaneously appealing and repulsive, the learning centre aids decision-making

For most of us, a freshly brewed cup of coffee smells wonderful. However, individual components that make up the fragrance of coffee can be extremely repulsive in isolation or in a different combination. The brain therefore relativizes and evaluates the individual components of a fragrance. Only then is an informed decision possible as to whether an odour and its source are “good” or “bad”. Scientists from the Max Planck Institute of Neurobiology in Martinsried have discovered how conflicting smells are processed in the mushroom body of the brain of the fruit fly. The results assign a new function to this brain region and show that sensory stimuli are evaluated in a situation-dependent context. In this way the insects are able to make an appropriate decision on the spur of the moment.


Nerve cells that use dopamine as a neurotransmitter (green) enable hungry flies to ignore danger signs and modulate their innate behaviour.

© MPI of Neurobiology/ Friedrich

Most sensory impressions are complex. For example, a fragrant substance usually appears in combination with many other odours - like the smell of the aforementioned cup of coffee, which consists of over 800 individual odours, including some unpleasant ones. For the fruit fly Drosophila, the smell of carbon dioxide (CO2) is repellent. Among other things, the gas is released by stressed flies to warn other members of the species. When the insects smell CO2 an innate flight response is triggered. However, CO2 is also produced by overripe fruit – a coveted source of food for many insects. Foraging flies must therefore be able to ignore their innate aversion to CO2 in instances where the gas is present in combination with food odours. It is still poorly understood how the brain compares individual olfactory sensations and classifies them according to the situation at hand in order to reach a sensible decision (here: food or danger).

“The opposing significance of CO2 for fruit flies is an ideal starting point to explore how the brain correctly evaluates individual sensory impressions depending on the situation,” says Ilona Grunwald Kadow. Together with her team at the Max Planck Institute of Neurobiology, she studies how the brain processes odours and makes decisions based on the results. The scientists have now been able to show that complex or opposing sensory information is processed in the mushroom body. Until now, this brain area was thought to be a centre for learning and memory storage. The new results show that the mushroom body has an additional function: it evaluates sensory impressions independently of learned content and memory to allow instantaneous decisions.

The scientists were able to show that CO2 activates neurons in the neural network that includes the mushroom body. Those neurons, in turn, trigger the flies’ flight behaviour. However, if CO2 occurs along with food odours, the food odour stimulates neurons within the mushroom body network that release the neurotransmitter dopamine. Dopamine occurs in many species, including humans, in connection with positive values. When food smells are present along with CO2, these dopaminergic neurons in fruit flies transmit this information to the mushroom body, where they suppress the innate CO2 response by inhibiting “avoidance neurons”.

“Interestingly, the experience that CO2 frequently occurs together with food odours does not cause the insects to lose their aversion to CO2 forever,” says Grunwald Kadow. When the information about the simultaneous occurrence of CO2 and food odours is transmitted to the “learning centre” in the mushroom body, an immediate change of behaviour occurs, but not a permanent change with regard to the negative evaluation of CO2. This could apply to other sensory impressions as well, such as vision. The researchers speculate that the absence of a permanent change in behaviour could be vital in many situations. The smell of predators, for example, triggers an instinctive fear in humans. We do not lose this fear, even after experiencing caged predators and their smell at a zoo. The human brain therefore also appears to compare and draw different conclusions depending on the circumstances.


Contact

Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514

Email: merker@neuro.mpg.de


Dr. Ilona Grunwald Kadow
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3159

Fax: +49 89 8578-3152

Email: ikadow@neuro.mpg.de


Original publication
Laurence P.C. Lewis, K.P. Siju, Yoshinori Aso, Anja B. Friedrich, Alexander J.B. Bulteel, Gerald M. Rubin, Ilona C. Grunwald Kadow

A higher brain circuit for immediate integration of conflicting sensory information in Drosophila

Current Biology, online 20 August, 2015

Dr. Stefanie Merker | Max Planck Institute of Neurobiology, Martinsried

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>