Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Decision-making in the fly brain


When food smells simultaneously appealing and repulsive, the learning centre aids decision-making

For most of us, a freshly brewed cup of coffee smells wonderful. However, individual components that make up the fragrance of coffee can be extremely repulsive in isolation or in a different combination. The brain therefore relativizes and evaluates the individual components of a fragrance. Only then is an informed decision possible as to whether an odour and its source are “good” or “bad”. Scientists from the Max Planck Institute of Neurobiology in Martinsried have discovered how conflicting smells are processed in the mushroom body of the brain of the fruit fly. The results assign a new function to this brain region and show that sensory stimuli are evaluated in a situation-dependent context. In this way the insects are able to make an appropriate decision on the spur of the moment.

Nerve cells that use dopamine as a neurotransmitter (green) enable hungry flies to ignore danger signs and modulate their innate behaviour.

© MPI of Neurobiology/ Friedrich

Most sensory impressions are complex. For example, a fragrant substance usually appears in combination with many other odours - like the smell of the aforementioned cup of coffee, which consists of over 800 individual odours, including some unpleasant ones. For the fruit fly Drosophila, the smell of carbon dioxide (CO2) is repellent. Among other things, the gas is released by stressed flies to warn other members of the species. When the insects smell CO2 an innate flight response is triggered. However, CO2 is also produced by overripe fruit – a coveted source of food for many insects. Foraging flies must therefore be able to ignore their innate aversion to CO2 in instances where the gas is present in combination with food odours. It is still poorly understood how the brain compares individual olfactory sensations and classifies them according to the situation at hand in order to reach a sensible decision (here: food or danger).

“The opposing significance of CO2 for fruit flies is an ideal starting point to explore how the brain correctly evaluates individual sensory impressions depending on the situation,” says Ilona Grunwald Kadow. Together with her team at the Max Planck Institute of Neurobiology, she studies how the brain processes odours and makes decisions based on the results. The scientists have now been able to show that complex or opposing sensory information is processed in the mushroom body. Until now, this brain area was thought to be a centre for learning and memory storage. The new results show that the mushroom body has an additional function: it evaluates sensory impressions independently of learned content and memory to allow instantaneous decisions.

The scientists were able to show that CO2 activates neurons in the neural network that includes the mushroom body. Those neurons, in turn, trigger the flies’ flight behaviour. However, if CO2 occurs along with food odours, the food odour stimulates neurons within the mushroom body network that release the neurotransmitter dopamine. Dopamine occurs in many species, including humans, in connection with positive values. When food smells are present along with CO2, these dopaminergic neurons in fruit flies transmit this information to the mushroom body, where they suppress the innate CO2 response by inhibiting “avoidance neurons”.

“Interestingly, the experience that CO2 frequently occurs together with food odours does not cause the insects to lose their aversion to CO2 forever,” says Grunwald Kadow. When the information about the simultaneous occurrence of CO2 and food odours is transmitted to the “learning centre” in the mushroom body, an immediate change of behaviour occurs, but not a permanent change with regard to the negative evaluation of CO2. This could apply to other sensory impressions as well, such as vision. The researchers speculate that the absence of a permanent change in behaviour could be vital in many situations. The smell of predators, for example, triggers an instinctive fear in humans. We do not lose this fear, even after experiencing caged predators and their smell at a zoo. The human brain therefore also appears to compare and draw different conclusions depending on the circumstances.


Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514


Dr. Ilona Grunwald Kadow
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3159

Fax: +49 89 8578-3152


Original publication
Laurence P.C. Lewis, K.P. Siju, Yoshinori Aso, Anja B. Friedrich, Alexander J.B. Bulteel, Gerald M. Rubin, Ilona C. Grunwald Kadow

A higher brain circuit for immediate integration of conflicting sensory information in Drosophila

Current Biology, online 20 August, 2015

Dr. Stefanie Merker | Max Planck Institute of Neurobiology, Martinsried

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>