Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering the mechanism of an ion pump

19.12.2011
Insights obtained from a structural and functional analysis of an ion-pumping protein could benefit future drug discovery efforts

From an analysis of the sodium-transporting vacuolar ATPases (V-ATPases) of the bacterium Enterococcus hirae, Takeshi Murata of the RIKEN Systems and Structural Biology Center, Yokohama, and colleagues recently obtained valuable structural and functional information about a process that pumps protons and other positively charged ions across cellular membranes1.


Figure 1: The crystal structure of the E. hirae V-ATPase with molecules of DCCD (green spheres) bound to E139 at each individual subunit.
Copyright : 2011 Takeshi Murata

Adenosine triphosphate (ATP) is the primary energy ‘currency’ within cells, and numerous enzymes are powered by the metabolic processing of this molecule via a mechanism known as hydrolysis. V-ATPases can exploit this process to pump positively charged ions across cellular membranes. This process occurs at the junction between a rotating ‘K’ domain and a fixed ‘a’ domain within the segment of the protein that resides at the cell membrane, although the specifics remain unclear.

N,N’-dicyclohexylcarbodiimide (DCCD), a chemical that selectively reacts with a specific glutamate amino acid (E139) within the sodium-binding pockets of the K ring, proved valuable in assessing this protein’s function. The researchers demonstrated that DCCD inhibited sodium binding by nearly 30-fold, but that this inhibition was sharply reduced when the enzyme was pretreated with sodium ions, suggesting that the two molecules interact with overlapping targets within the ring.

The K ring is composed of ten identical subunits, and DCCD efficiently reacts with E139 in each of these individual components (Fig. 1). By gathering structural data from the DCCD-treated V-ATPase, Murata and colleagues obtained a snapshot of what the protein looks like in the absence of sodium, which they could in turn compare against the structure of the sodium-bound form.

Although the two structures were largely similar, DCCD treatment triggered a change in E139 that locked the sodium binding sites into an ‘open’ structure that prevented ion retention. The negative charge of E139 made an important contribution to the binding of the positively charged Na+ ion; DCCD appeared to work by neutralizing this charge. The researchers hypothesize that a similar process governs ion release during the transport process; as the K domain rotates, each subunit’s E139 interacts with a positively charged amino acid on the domain, triggering ion release and transfer across the membrane.

Confirming this model will require additional structural data. “We would like to obtain the structure of [the] whole complex containing both the rotor ring and a-subunit,” Murata says. Nevertheless, these findings could prove immediately applicable to the development of more effective ATPase inhibitors, a class of drugs potentially useful for treating cancer and other diseases. “V-ATPases are of considerable pharmacological interest,” says Murata.

The corresponding author for this highlight is based at the Systems and Structural Biology Team, RIKEN Systems and Structural Biology Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>