Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Who decides in the brain?

Whether in society or nature, decisions are often the result of complex interactions between many factors. Because of this it is usually difficult to determine how much weight the different factors have in making a final decision.
Neuroscientists face a similar problem since decisions made by the brain always involve many neurons. Within a collaboration of the University of Tübingen and the Max Planck Institute for Biological Cybernetics, supported within the framework of the Bernstein Network, researchers lead by CIN professor Matthias Bethge have now shown how the weight of individual neurons in the decision-making process can be reconstructed despite interdependencies between the neurons.

When we see a person on the other side of the street who looks like an old friend, the informational input enters the brain via many sensory neurons. But which of these neurons are crucial in passing on the relevant information to higher brain areas, which will decide who the person is and whether to wave and say 'hello'? A research group lead by Matthias Bethge has now developed an equation that allows us to calculate to what degree a given individual sensory neuron is involved in the decision process.

Large flocks of birds can rapidly change their direction without it being clear how such a decision develops, and whether some birds have a larger influence on it than others. Since the behavior of any one bird depends on that of its neighbors, answering this question is rather complicated. A similar problem is faced by neuroscientists who want to find out which neurons in a large network caused a particular decision.

Photo: Christoffer A. Rasmussen, CreativeCommons CC 1.0

To approach this question, experimental researchers have so far considered the information that an individual sensory neuron carries about the final decision. Just as an individual is considered suspicious if he or she is found to have insider information about a crime, those sensory neurons whose activity contains information about the eventual decision are presumed to have played a role in reaching the final decision. The problem with this approach is that neurons - much like people – are constantly communicating with each other. A neuron which itself is not involved in the decision may simply have received this information from a neighboring neuron, and “join the conversation”. Actually, the neighboring cell sends out the crucial signal transmitted to the higher decision areas in the brain.

The new formula that has been developed by scientists addresses this by accounting not just for the information in the activity of any one neuron but also for the communication that takes place between them. This formula will now be used to determine whether only a few neurons that carry a lot of information are involved in the brain's decision process, or whether the information contained in very many neurons gets combined. In particular, it will be possible to address the more fundamental question: In which decisions does the brain use information in an optimal way, and for which decisions is its processing suboptimal?

The National Bernstein Network Computational Neuroscience was initiated by the Ministry for Education and Research (BMBF) in 2004 in order to establish the research discipline Computational Neuroscience in Germany. With the support of the BMBF, the network has developed into one of the largest research networks in the field of Computational Neuroscience worldwide. Namesake of the network is the German physiologist Julius Bernstein (1835-1917).
The Werner Reichardt Centre for Integrative Neuroscience (CIN) is an interdisciplinary institution at the Eberhard Karls University Tübingen funded by the German Excellence Initiative program. Its aim is to deepen our understanding of how the brain generates function and how brain diseases impair them, guided by the conviction that any progress in understanding can only be achieved through an integrative approach spanning multiple levels of organization.

More information is available from:
Dr. Ralf Haefner
Volen National Center for Complex Systems,
Volen 208/MS 013,
Brandeis University,
Waltham, MA 02454 (USA)
Tel: +1 (781) 786 1683

Prof. Dr. Matthias Bethge
Werner Reichardt Center for Integrative Neurosciences
University of Tübingen
Max Planck Institute for Biological Cybernetics
Bernstein Center for Computational Neuroscience
Otfried-Müllerstr. 25
72076 Tübingen (Germany)
Tel: +49 (0)7071-29 89017

Original publication:
Haefner R.M., Gerwinn S., Macke J.H., Bethge M. (2013): „Inferring decoding strategies from choice probabilities in the presence of correlated variability“. Nature Neuroscience: Jan 13, 2013

Weitere Informationen:
Homepage of the research group
Bernstein Center Tübingen
University of Tübingen
Max Planck Institute for Biological Cybernetics
Werner Reichardt Centre for Integrative Neuroscience
National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>