Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decade of Effort Yields Diabetes Susceptibility Gene

10.10.2011
Ten years of meticulous mouse breeding, screening, and record-keeping have finally paid off for Alan Attie and his lab members.

The University of Wisconsin–Madison researchers’ efforts, published Oct. 6 in the journal PLoS Genetics, pinpointed a gene that confers diabetes susceptibility in obese mice.

They also showed that the protein coded by the gene, called tomosyn-2, acts as a brake on insulin secretion from the pancreas.

“It’s too early for us to know how relevant this gene will be to human diabetes,” says Attie, a UW–Madison biochemistry professor, “but the concept of negative regulation is one of the most interesting things to come out of this study and that very likely applies to humans.”

In a properly tuned system, insulin secreted into the blood after eating helps maintain blood sugar at a safe level. Too little insulin (as in type 1 diabetes) or insulin resistance (as in type 2 diabetes) leads to high blood sugar and diabetic symptoms. Too much insulin can drive blood glucose dangerously low and lead to coma or even death in a matter of minutes.

“You can imagine that if you’re in a fasted state, you don’t want to increase your insulin, so it’s very important to have a brake on insulin secretion,” says Angie Oler, one of the lead authors. “It needs to be stopped when you’re not eating and it needs to start again when you do eat.”

The group honed in on tomosyn-2 while searching for genes that contribute to diabetes susceptibility in obese animals.

Why study fat mice?

“It takes more insulin to achieve the same glucose-lowering effect in an obese person than it does in a lean person. If you can produce that extra insulin – and most people do – you’ll be okay. You will avoid diabetes at the expense of having to produce and maintain a higher insulin level,” Attie explains. “Most of the type 2 diabetes that occurs in humans today would not exist were it not for the obesity epidemic.”

But an insufficient insulin response leads to diabetes, and the same is true in mice.

Painstaking genetic analyses and comparisons of obese diabetes-resistant and diabetes-susceptible mouse strains ultimately revealed a single amino acid difference that destabilizes the tomosyn-2 protein in the diabetes-resistant mice, effectively releasing the brake on insulin secretion and allowing those animals to release enough insulin to avoid diabetes.

The researchers also confirmed that the human form of tomosyn-2 inhibits insulin secretion from human pancreatic beta cells.

Though diabetes is highly unlikely to be caused by a single gene, identifying important biological pathways can suggest clinically useful targets. “This study shows the power of genetics to discover new mechanisms for a complex disease like type 2 diabetes,” says postdoctoral fellow Sushant Bhatnagar, a co-lead author of the paper.

“Now we know there are proteins that are negative regulators of insulin secretion. Very likely they do the same thing in human beta cells, and it motivates us to move forward to try to figure out the mechanisms behind that negative regulation,” Attie says.

The American Diabetes Association and the National Institutes of Health provided research funding.

Jill Sakai, jasakai@wisc.edu, (608) 262-9772
Alan Attie, adattie@wisc.edu, (608) 262-1372

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>