Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deathstalker scorpion venom could improve gene therapy for brain cancer

12.08.2010
An ingredient in the venom of the "deathstalker" scorpion could help gene therapy become an effective treatment for brain cancer, scientists are reporting. The substance allows therapeutic genes — genes that treat disease — to reach more brain cancer cells than current approaches, according to the study in ACS Nano, a monthly journal.

Miqin Zhang and colleagues note that gene therapy — the delivery of therapeutic genes into diseased cells — shows promise for fighting glioma, the most common and most serious form of brain cancer. But difficulties in getting genes to enter cancer cells and concerns over the safety and potential side effects of substances used to transport these genes have kept the approach from helping patients.

The scientists describe a new approach that could solve these problems. Key ingredients of their gene-delivery system are chlorotoxin, the substance in deathstalker scorpion venom that can slow the spread of brain cancer, and nanoparticles of iron oxide. Each nanoparticle is about 1/50,000th the width of a human hair. In tests on lab mice, the scientists demonstrated that their venom-based nanoparticles can induce nearly twice the amount of gene expression in brain cancer cells as nanoparticles that do not contain the venom ingredient. "These results indicate that this targeted gene delivery system may potentially improve treatment outcome of gene therapy for glioma and other deadly cancers," the article notes.

ARTICLE FOR IMMEDIATE RELEASE "Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma"

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/nn1008512

CONTACT:
Miqin Zhang, Ph.D.
Department of Materials Science and Engineering
University of Washington
Seattle, Wash. 98195
Phone: (206) 616-9356
Fax: (206) 543-3100
Email: mzhang@u.washington.edu

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>