Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deathstalker scorpion venom could improve gene therapy for brain cancer

An ingredient in the venom of the "deathstalker" scorpion could help gene therapy become an effective treatment for brain cancer, scientists are reporting. The substance allows therapeutic genes — genes that treat disease — to reach more brain cancer cells than current approaches, according to the study in ACS Nano, a monthly journal.

Miqin Zhang and colleagues note that gene therapy — the delivery of therapeutic genes into diseased cells — shows promise for fighting glioma, the most common and most serious form of brain cancer. But difficulties in getting genes to enter cancer cells and concerns over the safety and potential side effects of substances used to transport these genes have kept the approach from helping patients.

The scientists describe a new approach that could solve these problems. Key ingredients of their gene-delivery system are chlorotoxin, the substance in deathstalker scorpion venom that can slow the spread of brain cancer, and nanoparticles of iron oxide. Each nanoparticle is about 1/50,000th the width of a human hair. In tests on lab mice, the scientists demonstrated that their venom-based nanoparticles can induce nearly twice the amount of gene expression in brain cancer cells as nanoparticles that do not contain the venom ingredient. "These results indicate that this targeted gene delivery system may potentially improve treatment outcome of gene therapy for glioma and other deadly cancers," the article notes.

ARTICLE FOR IMMEDIATE RELEASE "Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma"


Miqin Zhang, Ph.D.
Department of Materials Science and Engineering
University of Washington
Seattle, Wash. 98195
Phone: (206) 616-9356
Fax: (206) 543-3100

Michael Bernstein | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>