Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Death of Polymers

19.02.2010
Revisiting Termination Rate Coefficients in Radical Homopolymerization

Although radical polymerization is used in the synthesis of about half the world’s polymers, details of exactly what is going on in the reaction soup in complex industrial settings have been sketchy at best. As the materials enter our lives as, for example, drugs, coatings, fibers and solar cells, controlling their reactions and therefore their properties is extremely important.

Scientists in New Zealand have recently addressed a fundamental part of this story by considering termination rate coefficients for a couple of very common reactions, using results from new analytical techniques to revisit our old understanding. They found the way the small polymers (oligomers) in the system move and their speed, i.e., their diffusion behavior, to be the critical factor. This work is published in a special issue of Macromolecular Chemistry and Physics, devoted to radical polymerization.

The people responsible, Greg Russell and his colleagues at the University of Canterbury, are experts in polymer kinetics. Russell explains, “The majority of chemists simply try to bring about reactions by mixing different chemicals together under different conditions. However it is also important, especially for those who make chemical products on a large scale, to have precise quantitative descriptions of the speeds at which reactions occur. Chemical kinetics is the field of work that develops such descriptions. It is therefore an area where chemistry and mathematics intersect.”

He goes on to say, “Arguably the hardest nut to crack in the radical polymerization scheme has been the termination reaction. In layman's terms, termination is the fundamental reaction whereby a polymer molecule stops growing larger. A reasonable analogy is human death, the process which ceases human life and thus prevents a human's age from mounting and mounting. In radical polymerization this reaction is diffusion controlled in rate, which means that its speed is determined by how fast the molecules move.” This speed of movement can depend on many factors such as how long the molecule is, the number of obstacles around the polymer, the temperature of the system, and so on. “This is the origin of the complexity of the termination reaction, and is the reason why, after over 60 years of intensive study, it is still not fully understood, not nearly.”

In this work Russell revisited some of the earliest questions about termination. “Recent years have seen the development of highly specialized techniques for measuring termination rate coefficients under precisely controlled conditions. I have taken this information and attempted to see whether it is consistent with systems where many different termination reactions occur at once, as is the case in commercial processes. For the monomer styrene I find there is consistency, but for methyl methacrylate there is not.”

In trying to explain this result, he eliminated most of the conventional views, and came to the conclusion that the answer lies with the oligomers in each system, which seem to have slightly different diffusional behavior.

Philipp Vana works at the University of Göttingen, where Greg Russell is currently on sabbatical. He specializes in radical polymerization and serves on the Advisory Board of Macromolecular Chemistry and Physics. He is the Guest Editor of the special issue. In his view, “Russell’s paper is especially exciting, as it demonstrates that the information gathered by modern and advanced methods is useful to reevaluate the results obtained by older methods. Completely new insights can be extracted by such an approach.” He adds that Russell’s work not only adds new information to the field, but also presents a nice view of the complete picture, “which helps us to understand the complete history of science instead of getting a short snapshot of the present.”

This historical perspective of the field is especially pertinent as the special issue focused on the kinetics and mechanism of radical polymerization was prepared in order to honor Michael Buback, who turns 65 this year and who, according to the editor Vana, “undisputably is one of the doyens in this field.” Recent years have seen the invention of new controlled polymerization methods and Vana says it is of “vital importance to fundamentally understand these new techniques in order to exploit their full potential for material design. The newly invented polymerization technologies also provided new avenues for unlocking the secrets of the conventional processes. Many important questions could be answered recently and it seems to be justified to resumé at this stage and to identify, which major questions need further attention.”

D. R. Tayler, K. Y. van Berkel, M. M. Alghamdi, G. T. Russell, “Termination Rate Coefficients for Radical Homopolymerization of Methyl Methacrylate and Styrene at Low Conversion,” Macromol. Chem. Phys. 2010, DOI: 10:1002/macp.200900668

Contact details:

Prof. Greg Russell
Department of Chemistry,
University of Canterbury,
Christchurch 8140, New Zealand
http://www.chem.canterbury.ac.nz/people/russell.shtml
During 2010: on sabbatical at Institute for Physical Chemistry, Göttingen University, Germany

Prof. Phillip Vana
Institute of Physical Chemistry
Georg-August-University Göttingen
Tammannstrasse 6, Raum 407
D-37077 Göttingen, Germany
http://www.fpm.chemie.uni-goettingen.de/pvana.htm
This paper is now available online on http://doi.wiley.com/10.1002/macp.200900668.

If you need further information or are interested in a pdf of the original articles please contact me at cteutsch@wiley-vch.de

Carmen Teutsch | Wiley-VCH
Further information:
http://www.macros.wiley-vch.de
http://www.interscience.wiley.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>