Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Death of Polymers

19.02.2010
Revisiting Termination Rate Coefficients in Radical Homopolymerization

Although radical polymerization is used in the synthesis of about half the world’s polymers, details of exactly what is going on in the reaction soup in complex industrial settings have been sketchy at best. As the materials enter our lives as, for example, drugs, coatings, fibers and solar cells, controlling their reactions and therefore their properties is extremely important.

Scientists in New Zealand have recently addressed a fundamental part of this story by considering termination rate coefficients for a couple of very common reactions, using results from new analytical techniques to revisit our old understanding. They found the way the small polymers (oligomers) in the system move and their speed, i.e., their diffusion behavior, to be the critical factor. This work is published in a special issue of Macromolecular Chemistry and Physics, devoted to radical polymerization.

The people responsible, Greg Russell and his colleagues at the University of Canterbury, are experts in polymer kinetics. Russell explains, “The majority of chemists simply try to bring about reactions by mixing different chemicals together under different conditions. However it is also important, especially for those who make chemical products on a large scale, to have precise quantitative descriptions of the speeds at which reactions occur. Chemical kinetics is the field of work that develops such descriptions. It is therefore an area where chemistry and mathematics intersect.”

He goes on to say, “Arguably the hardest nut to crack in the radical polymerization scheme has been the termination reaction. In layman's terms, termination is the fundamental reaction whereby a polymer molecule stops growing larger. A reasonable analogy is human death, the process which ceases human life and thus prevents a human's age from mounting and mounting. In radical polymerization this reaction is diffusion controlled in rate, which means that its speed is determined by how fast the molecules move.” This speed of movement can depend on many factors such as how long the molecule is, the number of obstacles around the polymer, the temperature of the system, and so on. “This is the origin of the complexity of the termination reaction, and is the reason why, after over 60 years of intensive study, it is still not fully understood, not nearly.”

In this work Russell revisited some of the earliest questions about termination. “Recent years have seen the development of highly specialized techniques for measuring termination rate coefficients under precisely controlled conditions. I have taken this information and attempted to see whether it is consistent with systems where many different termination reactions occur at once, as is the case in commercial processes. For the monomer styrene I find there is consistency, but for methyl methacrylate there is not.”

In trying to explain this result, he eliminated most of the conventional views, and came to the conclusion that the answer lies with the oligomers in each system, which seem to have slightly different diffusional behavior.

Philipp Vana works at the University of Göttingen, where Greg Russell is currently on sabbatical. He specializes in radical polymerization and serves on the Advisory Board of Macromolecular Chemistry and Physics. He is the Guest Editor of the special issue. In his view, “Russell’s paper is especially exciting, as it demonstrates that the information gathered by modern and advanced methods is useful to reevaluate the results obtained by older methods. Completely new insights can be extracted by such an approach.” He adds that Russell’s work not only adds new information to the field, but also presents a nice view of the complete picture, “which helps us to understand the complete history of science instead of getting a short snapshot of the present.”

This historical perspective of the field is especially pertinent as the special issue focused on the kinetics and mechanism of radical polymerization was prepared in order to honor Michael Buback, who turns 65 this year and who, according to the editor Vana, “undisputably is one of the doyens in this field.” Recent years have seen the invention of new controlled polymerization methods and Vana says it is of “vital importance to fundamentally understand these new techniques in order to exploit their full potential for material design. The newly invented polymerization technologies also provided new avenues for unlocking the secrets of the conventional processes. Many important questions could be answered recently and it seems to be justified to resumé at this stage and to identify, which major questions need further attention.”

D. R. Tayler, K. Y. van Berkel, M. M. Alghamdi, G. T. Russell, “Termination Rate Coefficients for Radical Homopolymerization of Methyl Methacrylate and Styrene at Low Conversion,” Macromol. Chem. Phys. 2010, DOI: 10:1002/macp.200900668

Contact details:

Prof. Greg Russell
Department of Chemistry,
University of Canterbury,
Christchurch 8140, New Zealand
http://www.chem.canterbury.ac.nz/people/russell.shtml
During 2010: on sabbatical at Institute for Physical Chemistry, Göttingen University, Germany

Prof. Phillip Vana
Institute of Physical Chemistry
Georg-August-University Göttingen
Tammannstrasse 6, Raum 407
D-37077 Göttingen, Germany
http://www.fpm.chemie.uni-goettingen.de/pvana.htm
This paper is now available online on http://doi.wiley.com/10.1002/macp.200900668.

If you need further information or are interested in a pdf of the original articles please contact me at cteutsch@wiley-vch.de

Carmen Teutsch | Wiley-VCH
Further information:
http://www.macros.wiley-vch.de
http://www.interscience.wiley.com

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>