Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Death of Polymers

19.02.2010
Revisiting Termination Rate Coefficients in Radical Homopolymerization

Although radical polymerization is used in the synthesis of about half the world’s polymers, details of exactly what is going on in the reaction soup in complex industrial settings have been sketchy at best. As the materials enter our lives as, for example, drugs, coatings, fibers and solar cells, controlling their reactions and therefore their properties is extremely important.

Scientists in New Zealand have recently addressed a fundamental part of this story by considering termination rate coefficients for a couple of very common reactions, using results from new analytical techniques to revisit our old understanding. They found the way the small polymers (oligomers) in the system move and their speed, i.e., their diffusion behavior, to be the critical factor. This work is published in a special issue of Macromolecular Chemistry and Physics, devoted to radical polymerization.

The people responsible, Greg Russell and his colleagues at the University of Canterbury, are experts in polymer kinetics. Russell explains, “The majority of chemists simply try to bring about reactions by mixing different chemicals together under different conditions. However it is also important, especially for those who make chemical products on a large scale, to have precise quantitative descriptions of the speeds at which reactions occur. Chemical kinetics is the field of work that develops such descriptions. It is therefore an area where chemistry and mathematics intersect.”

He goes on to say, “Arguably the hardest nut to crack in the radical polymerization scheme has been the termination reaction. In layman's terms, termination is the fundamental reaction whereby a polymer molecule stops growing larger. A reasonable analogy is human death, the process which ceases human life and thus prevents a human's age from mounting and mounting. In radical polymerization this reaction is diffusion controlled in rate, which means that its speed is determined by how fast the molecules move.” This speed of movement can depend on many factors such as how long the molecule is, the number of obstacles around the polymer, the temperature of the system, and so on. “This is the origin of the complexity of the termination reaction, and is the reason why, after over 60 years of intensive study, it is still not fully understood, not nearly.”

In this work Russell revisited some of the earliest questions about termination. “Recent years have seen the development of highly specialized techniques for measuring termination rate coefficients under precisely controlled conditions. I have taken this information and attempted to see whether it is consistent with systems where many different termination reactions occur at once, as is the case in commercial processes. For the monomer styrene I find there is consistency, but for methyl methacrylate there is not.”

In trying to explain this result, he eliminated most of the conventional views, and came to the conclusion that the answer lies with the oligomers in each system, which seem to have slightly different diffusional behavior.

Philipp Vana works at the University of Göttingen, where Greg Russell is currently on sabbatical. He specializes in radical polymerization and serves on the Advisory Board of Macromolecular Chemistry and Physics. He is the Guest Editor of the special issue. In his view, “Russell’s paper is especially exciting, as it demonstrates that the information gathered by modern and advanced methods is useful to reevaluate the results obtained by older methods. Completely new insights can be extracted by such an approach.” He adds that Russell’s work not only adds new information to the field, but also presents a nice view of the complete picture, “which helps us to understand the complete history of science instead of getting a short snapshot of the present.”

This historical perspective of the field is especially pertinent as the special issue focused on the kinetics and mechanism of radical polymerization was prepared in order to honor Michael Buback, who turns 65 this year and who, according to the editor Vana, “undisputably is one of the doyens in this field.” Recent years have seen the invention of new controlled polymerization methods and Vana says it is of “vital importance to fundamentally understand these new techniques in order to exploit their full potential for material design. The newly invented polymerization technologies also provided new avenues for unlocking the secrets of the conventional processes. Many important questions could be answered recently and it seems to be justified to resumé at this stage and to identify, which major questions need further attention.”

D. R. Tayler, K. Y. van Berkel, M. M. Alghamdi, G. T. Russell, “Termination Rate Coefficients for Radical Homopolymerization of Methyl Methacrylate and Styrene at Low Conversion,” Macromol. Chem. Phys. 2010, DOI: 10:1002/macp.200900668

Contact details:

Prof. Greg Russell
Department of Chemistry,
University of Canterbury,
Christchurch 8140, New Zealand
http://www.chem.canterbury.ac.nz/people/russell.shtml
During 2010: on sabbatical at Institute for Physical Chemistry, Göttingen University, Germany

Prof. Phillip Vana
Institute of Physical Chemistry
Georg-August-University Göttingen
Tammannstrasse 6, Raum 407
D-37077 Göttingen, Germany
http://www.fpm.chemie.uni-goettingen.de/pvana.htm
This paper is now available online on http://doi.wiley.com/10.1002/macp.200900668.

If you need further information or are interested in a pdf of the original articles please contact me at cteutsch@wiley-vch.de

Carmen Teutsch | Wiley-VCH
Further information:
http://www.macros.wiley-vch.de
http://www.interscience.wiley.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>