Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death dance reveals secrets of apoptosis in dissociated human ES cells

09.08.2010
Researchers at the RIKEN Center for Developmental Biology have unraveled the mystery of why human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergo programmed cell death (apoptosis) when cultured in isolation.

By unlocking the potential of cell therapy techniques, the discovery promises new hope to sufferers of debilitating degenerative diseases.

Cell dissociation, a technique for isolating cells in procedures such as subcloning, poses one of the greatest obstacles to effective stem cell research due to its damaging effects on human ES cells. 99% of human ES cells cultured in this way are destroyed by an extensive apoptotic response that is curiously absent in mouse ES cells. Earlier research by the researchers uncovered that inhibition of a protein known as the Rho-associated kinase (ROCK) reduced this rate of cell death by 30%, yet fundamental questions remained about the mechanisms involved.

To answer these questions, the researchers applied live-cell imaging to the earliest phase of dissociation in human and mouse ES cells. Results revealed a striking contrast: whereas the mouse ES cells hardly moved, the human ES cells skittered about in a so-called “death dance”, immediately sprouting finger-shaped bulges, known as blebs, which grew until the cells burst and died. The researchers traced this early-onset blebbing, whose duration and severity exceeded anything ever before observed, to the hyperactivation of myosin, a type of protein responsible for cell motility.

Contrary to expectation, the researchers went on demonstrate that it is this myosin hyperactivation, mediated by activation of the ROCK kinase, which is the direct cause of apoptosis in dissociated human ES cells, and not the blebbing itself. Further implicated in this process is the inhibition of another protein known for its role in cell motility, Rac, which together with ROCK activation strongly promotes myosin hyperactivation leading to cell death.

Reported in Cell Stem Cell, these results provide a first ever comprehensive elucidation of mechanisms underlying dissociation-induced apoptosis in human ES cells, pointing the way to safer and more effective cellular therapy treatments for a range of debilitating degenerative diseases.

For more information, please contact:

Dr. Yoshiki Sasai
Laboratory for Organogenesis and Neurogenesis
RIKEN Center for Developmental Biology
Tel: +81-(0)78-306-1841 / Fax: +81-(0)78-306-1854
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Journal information
1. Ohgushi et al., Molecular Pathway and Cell State Responsible for Dissociation-Induced Apoptosis in Human Pluripotent Stem Cells, Cell Stem Cell (2010), doi:10.1016/j.stem.2010.06.018

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>