Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death dance reveals secrets of apoptosis in dissociated human ES cells

09.08.2010
Researchers at the RIKEN Center for Developmental Biology have unraveled the mystery of why human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergo programmed cell death (apoptosis) when cultured in isolation.

By unlocking the potential of cell therapy techniques, the discovery promises new hope to sufferers of debilitating degenerative diseases.

Cell dissociation, a technique for isolating cells in procedures such as subcloning, poses one of the greatest obstacles to effective stem cell research due to its damaging effects on human ES cells. 99% of human ES cells cultured in this way are destroyed by an extensive apoptotic response that is curiously absent in mouse ES cells. Earlier research by the researchers uncovered that inhibition of a protein known as the Rho-associated kinase (ROCK) reduced this rate of cell death by 30%, yet fundamental questions remained about the mechanisms involved.

To answer these questions, the researchers applied live-cell imaging to the earliest phase of dissociation in human and mouse ES cells. Results revealed a striking contrast: whereas the mouse ES cells hardly moved, the human ES cells skittered about in a so-called “death dance”, immediately sprouting finger-shaped bulges, known as blebs, which grew until the cells burst and died. The researchers traced this early-onset blebbing, whose duration and severity exceeded anything ever before observed, to the hyperactivation of myosin, a type of protein responsible for cell motility.

Contrary to expectation, the researchers went on demonstrate that it is this myosin hyperactivation, mediated by activation of the ROCK kinase, which is the direct cause of apoptosis in dissociated human ES cells, and not the blebbing itself. Further implicated in this process is the inhibition of another protein known for its role in cell motility, Rac, which together with ROCK activation strongly promotes myosin hyperactivation leading to cell death.

Reported in Cell Stem Cell, these results provide a first ever comprehensive elucidation of mechanisms underlying dissociation-induced apoptosis in human ES cells, pointing the way to safer and more effective cellular therapy treatments for a range of debilitating degenerative diseases.

For more information, please contact:

Dr. Yoshiki Sasai
Laboratory for Organogenesis and Neurogenesis
RIKEN Center for Developmental Biology
Tel: +81-(0)78-306-1841 / Fax: +81-(0)78-306-1854
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Journal information
1. Ohgushi et al., Molecular Pathway and Cell State Responsible for Dissociation-Induced Apoptosis in Human Pluripotent Stem Cells, Cell Stem Cell (2010), doi:10.1016/j.stem.2010.06.018

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>