Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly Malaria Jumped to Humans from Wild Chimps

05.08.2009
Genetic detective work by UMass Amherst’s Stephen Rich and international colleagues reveals the unexpected finding that the parasite causing the deadliest form of malaria jumped from wild African chimpanzees to humans as recently as 10,000 years ago, much more recently than thought possible.

An international research team led by evolutionary geneticist Stephen M. Rich of the University of Massachusetts Amherst has discovered that the parasite Plasmodium falciparum, which causes the deadliest form of malaria, jumped from wild chimpanzees to humans via bites by mosquitoes (the vector) in equatorial Africa perhaps as recently as 10,000 years ago. It’s an unsuspected origin much more recent than previously thought possible.

Genetic detective work by Rich and colleagues is described in the current issue of Proceedings of the National Academy of Sciences, USA. The researchers used blood samples from wild and wild-born captive African chimpanzees to discover that malaria is apparently a zoonotic disease, that is, one that jumps from animals to infect humans. A similar story has been proposed for how HIV (Human Immunodeficiency Virus) arose from a chimpanzee counterpart SIV (Simian Immunodeficiency Virus). Other zoonoses such as West Nile virus and Lyme disease, while still threats to humans, remain primarily in wild animals.

Rich and colleagues reveal the true evolutionary history of two closely related parasites—P. reichenowi found in chimps, and P. falciparum which is so deadly to humans—and refute a widely held view that the two species derived from parasites of the human and chimpanzee common ancestor some 5 to 7 million years ago.

Rich says this breakthrough on the recent evolutionary origin of P. falciparum will allow his group to determine exactly what makes it so extremely virulent (quickly multiplying) and pathogenic (rapidly fatal) compared to the other three malaria types that infect humans. As many as 3 million people die each year of malaria, mostly children, while hundreds of millions suffer debilitating illness. “Our discovery of the origin of malignant malaria derived from a chimpanzee is a watershed. It’s akin to finding a living Neanderthal and getting the opportunity to study his biology and behaviors,” says Rich.

This new study caps more than a decade of investigation by Rich and a co-author, evolutionary biologist Francisco Ayala at UC Irvine, who together wrote a ground-breaking 1998 paper proposing that human malaria parasites shared common ancestry as recently as 10,000 years ago, not 5 to 7 million as always assumed. Rich recalls, “Before our study in 1998, very little was known about genetic diversity among malaria parasites. When we proposed that all malaria parasites were originated from a very recent common ancestor, our colleagues thought we were surely mistaken,” he adds, because at the time it was well known that genes controlling the parasites’ ability to infect hosts and evade the immune systems were very diverse.

But Rich and Ayala’s work showed these genes were so diverse because they evolved by previously unknown mechanisms at rates that were not thought possible. From this, they proposed their Malaria’s Eve hypothesis about malaria’s foremother, which was later further supported by several independent research groups. Since the 1998 study, debate has persisted as to the exact age of Malaria’s Eve, with estimates ranging from a few thousand to a couple of hundred thousand years. “I didn’t participate much in this debate, because I knew that there was a missing piece of the puzzle,” says Rich.

He knew the key to understanding human malaria’s Eve depended on more thorough study of its chimpanzee counterpart. At the time, only one known isolate of chimpanzee malaria existed, from the 1960s. So Rich initiated a collaboration with current co-authors Fabian Leendertz of the Robert Koch Institute and Christoph Boesch of the Max Planck Institute, who were looking for new viral pathogens in chimps.

Using genetic tools, Rich screened blood samples from 10 chimps that had died of natural causes and found that two were infected with chimpanzee malaria parasites. As a follow-up, he collaborated with Nathan Wolfe of the Global Viral Forecasting Initiative, also a current co-author, and acquired 94 more blood samples from wild and wild-born captive chimpanzees in wildlife sanctuaries in Cameroon. In DNA studies at his UMass Amherst laboratory, Rich determined that these chimpanzee parasites are not only the closest known relative of our malaria parasites, but also that human malaria derives from a transfer of parasites from the chimp lineage into our human ancestors.

So why did P. falciparum develop such a deadly potency for killing humans while the closely-related chimpanzee disease does not appear to do nearly so much damage? Rich speculates that the answer lies in a key change in human society 8,000 to 10,000 years ago¯from nomadic hunter-gathering to settled agrarian societies. When humans began to stay for long periods in a single place, and they started to irrigate fields and live in huts rather than travel daily, the change selected for what Rich calls “vectorial promiscuity.” That is, a highly anthropophilic (human-loving) Anopheles mosquito got very good at spreading huge numbers of parasites by biting as many people sleeping in the same hut as quickly as possible. Our closest relative, chimpanzees, made no such behavior change, and the P. reichenowi parasite never encountered a situation that would allow selection of a strain with increased virulence.

Rich says all the genetic material that has accumulated in the P. falciparum parasite since its divergence from P. reichenowi now becomes the investigation ground for parasitologists. With new knowledge, they may be able to learn how to control and subdue one of the most deadly organisms ever to make a human sick.

Rich is the lead author of this study, conducted in collaboration with investigators from the Global Viral Forecasting Initiative, San Francisco; University of California Irvine, Stanford University, Max Planck Institute, Leipzig; Robert Koch Institute, Berlin; US Department of Agriculture, Beltsville, Md. and the University of Yaounde, Cameroon.

This work was supported by grants from the National Institute of General Medical Sciences at NIH, the Google Foundation, and the Skoll Foundation.

Stephen Rich | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>