Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly Malaria Jumped to Humans from Wild Chimps

05.08.2009
Genetic detective work by UMass Amherst’s Stephen Rich and international colleagues reveals the unexpected finding that the parasite causing the deadliest form of malaria jumped from wild African chimpanzees to humans as recently as 10,000 years ago, much more recently than thought possible.

An international research team led by evolutionary geneticist Stephen M. Rich of the University of Massachusetts Amherst has discovered that the parasite Plasmodium falciparum, which causes the deadliest form of malaria, jumped from wild chimpanzees to humans via bites by mosquitoes (the vector) in equatorial Africa perhaps as recently as 10,000 years ago. It’s an unsuspected origin much more recent than previously thought possible.

Genetic detective work by Rich and colleagues is described in the current issue of Proceedings of the National Academy of Sciences, USA. The researchers used blood samples from wild and wild-born captive African chimpanzees to discover that malaria is apparently a zoonotic disease, that is, one that jumps from animals to infect humans. A similar story has been proposed for how HIV (Human Immunodeficiency Virus) arose from a chimpanzee counterpart SIV (Simian Immunodeficiency Virus). Other zoonoses such as West Nile virus and Lyme disease, while still threats to humans, remain primarily in wild animals.

Rich and colleagues reveal the true evolutionary history of two closely related parasites—P. reichenowi found in chimps, and P. falciparum which is so deadly to humans—and refute a widely held view that the two species derived from parasites of the human and chimpanzee common ancestor some 5 to 7 million years ago.

Rich says this breakthrough on the recent evolutionary origin of P. falciparum will allow his group to determine exactly what makes it so extremely virulent (quickly multiplying) and pathogenic (rapidly fatal) compared to the other three malaria types that infect humans. As many as 3 million people die each year of malaria, mostly children, while hundreds of millions suffer debilitating illness. “Our discovery of the origin of malignant malaria derived from a chimpanzee is a watershed. It’s akin to finding a living Neanderthal and getting the opportunity to study his biology and behaviors,” says Rich.

This new study caps more than a decade of investigation by Rich and a co-author, evolutionary biologist Francisco Ayala at UC Irvine, who together wrote a ground-breaking 1998 paper proposing that human malaria parasites shared common ancestry as recently as 10,000 years ago, not 5 to 7 million as always assumed. Rich recalls, “Before our study in 1998, very little was known about genetic diversity among malaria parasites. When we proposed that all malaria parasites were originated from a very recent common ancestor, our colleagues thought we were surely mistaken,” he adds, because at the time it was well known that genes controlling the parasites’ ability to infect hosts and evade the immune systems were very diverse.

But Rich and Ayala’s work showed these genes were so diverse because they evolved by previously unknown mechanisms at rates that were not thought possible. From this, they proposed their Malaria’s Eve hypothesis about malaria’s foremother, which was later further supported by several independent research groups. Since the 1998 study, debate has persisted as to the exact age of Malaria’s Eve, with estimates ranging from a few thousand to a couple of hundred thousand years. “I didn’t participate much in this debate, because I knew that there was a missing piece of the puzzle,” says Rich.

He knew the key to understanding human malaria’s Eve depended on more thorough study of its chimpanzee counterpart. At the time, only one known isolate of chimpanzee malaria existed, from the 1960s. So Rich initiated a collaboration with current co-authors Fabian Leendertz of the Robert Koch Institute and Christoph Boesch of the Max Planck Institute, who were looking for new viral pathogens in chimps.

Using genetic tools, Rich screened blood samples from 10 chimps that had died of natural causes and found that two were infected with chimpanzee malaria parasites. As a follow-up, he collaborated with Nathan Wolfe of the Global Viral Forecasting Initiative, also a current co-author, and acquired 94 more blood samples from wild and wild-born captive chimpanzees in wildlife sanctuaries in Cameroon. In DNA studies at his UMass Amherst laboratory, Rich determined that these chimpanzee parasites are not only the closest known relative of our malaria parasites, but also that human malaria derives from a transfer of parasites from the chimp lineage into our human ancestors.

So why did P. falciparum develop such a deadly potency for killing humans while the closely-related chimpanzee disease does not appear to do nearly so much damage? Rich speculates that the answer lies in a key change in human society 8,000 to 10,000 years ago¯from nomadic hunter-gathering to settled agrarian societies. When humans began to stay for long periods in a single place, and they started to irrigate fields and live in huts rather than travel daily, the change selected for what Rich calls “vectorial promiscuity.” That is, a highly anthropophilic (human-loving) Anopheles mosquito got very good at spreading huge numbers of parasites by biting as many people sleeping in the same hut as quickly as possible. Our closest relative, chimpanzees, made no such behavior change, and the P. reichenowi parasite never encountered a situation that would allow selection of a strain with increased virulence.

Rich says all the genetic material that has accumulated in the P. falciparum parasite since its divergence from P. reichenowi now becomes the investigation ground for parasitologists. With new knowledge, they may be able to learn how to control and subdue one of the most deadly organisms ever to make a human sick.

Rich is the lead author of this study, conducted in collaboration with investigators from the Global Viral Forecasting Initiative, San Francisco; University of California Irvine, Stanford University, Max Planck Institute, Leipzig; Robert Koch Institute, Berlin; US Department of Agriculture, Beltsville, Md. and the University of Yaounde, Cameroon.

This work was supported by grants from the National Institute of General Medical Sciences at NIH, the Google Foundation, and the Skoll Foundation.

Stephen Rich | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>