Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly Jellyfish Weapons Unravelled

19.04.2012
Heidelberg researchers analyse proteins of stinging cells in the Hydra freshwater polyp

Heidelberg researchers have succeeded in unravelling the defence mechanisms of jellyfish. Scientists working with Prof. Dr. Thomas Holstein and Dr. Suat Özbek from the Centre for Organismal Studies (COS) of Heidelberg University, together with collaborators from the German Cancer Research Center (DKFZ), analysed the proteome, or full set of proteins, of the stinging cells in the freshwater polyp Hydra.


Hydra freshwater polyp. Animal with tentacles and buds (left); tentacle with nematocysts in battery cells of a tentacle (middle); isolated and partly discharged stinging capsules (right)

Photos: Nüchter and Holstein (left), Holstein (middle and right), Molecular Evolution & Genomics, COS Heidelberg

The results of their research reveal a complex mixture of toxic and structural proteins that can explain the extraordinary toxicity and biophysical properties of these unique cells. They also show how the energy for discharging the toxin can be stored in the stinging cells and released at extraordinary speed.

With their poison cells, jellyfish and other cnidarians have developed one of the most venomous and differentiated cellular mechanisms in the animal kingdom. Stinging cells, also known as nematocysts or cnidocysts, are found in the outer cell layer of cnidarians and are used for capturing prey or for defence. They consist mainly of a stinging capsule, a giant secretory vesicle. Inside this organelle a long, barbed tubule is coiled up, which turns inside out like the finger of a glove during discharge, thus releasing the deadly poison into the prey. This mixture of previously unknown toxins paralyses the nervous system of the prey and destroys their cells. Injecting the toxins requires an effective mechanism. Studies have shown that the discharge of toxins is associated with an extremely high pressure of 15 megapascals, whereby the stylet, a thin barb, is able to penetrate even thick crustacean shells. The stylet is accelerated at a force of 5 million g in under 700 nanoseconds, making the discharge of toxins harpoon-like.

Up until now, the molecular components responsible for the biomechanical properties of these unique cellular weapons were largely unknown. The Heidelberg scientists used protein mass spectroscopy to study the cells of the Hydra magnipapillata freshwater polyp. The procedure afforded them a precise qualitative and quantitative analysis of the chemical composition of the substances, thus enabling them to map the nematocyst proteome of the Hydra. Prof. Holstein and Dr. Özbek’s research team were surprised at its complexity. The biologists discovered 410 proteins with venomous and lytic, but also adhesive or fibrous properties. The proteins of the stinging capsule wall contain hitherto unknown structural components that form a tissue-like matrix, a complex protein mesh. This structure of collagen and elastomers surpasses the elasticity and tensile strength of even spider’s silk.

These findings allow the Heidelberg researchers to explain how the energy for discharging the toxin can be stored in the stinging cells and then released from the elastic structure of the capsule wall in nanoseconds at an extraordinary speed. “The poison cells of the cnidarians represent an effective combination of the powerful molecular spring mechanism and a structure with extreme biophysical properties,” says Prof. Holstein. The studies also suggest that the organelles containing the injectable toxin have adopted the molecular properties of connective tissue proteins such as collagens during their development. According to Prof. Holstein, it was an unexpected solution in early evolution to develop such a sophisticated mechanism for prey capture and defence.

Original publication:
Prakash G. Balasubramanian, Anna Beckmann, Uwe Warnken, Martina Schnölzer, Andreas Schüler, Erich Bornberg-Bauer, Thomas W. Holstein, and Suat Özbek: Proteome of Hydra Nematocyst, Journal of Biological Chemistry, 23 March, 2012, doi:10.1074/jbc.M111.328203

Contact:
Prof. Dr. Thomas Holstein / PD Dr. Suat Özbek
Centre for Organismal Studies
Phone +49 6221 54-5679, -5638
thomas.holstein@cos.uni-heidelberg.de
suat.oezbek@cos.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>