Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly Jellyfish Weapons Unravelled

19.04.2012
Heidelberg researchers analyse proteins of stinging cells in the Hydra freshwater polyp

Heidelberg researchers have succeeded in unravelling the defence mechanisms of jellyfish. Scientists working with Prof. Dr. Thomas Holstein and Dr. Suat Özbek from the Centre for Organismal Studies (COS) of Heidelberg University, together with collaborators from the German Cancer Research Center (DKFZ), analysed the proteome, or full set of proteins, of the stinging cells in the freshwater polyp Hydra.


Hydra freshwater polyp. Animal with tentacles and buds (left); tentacle with nematocysts in battery cells of a tentacle (middle); isolated and partly discharged stinging capsules (right)

Photos: Nüchter and Holstein (left), Holstein (middle and right), Molecular Evolution & Genomics, COS Heidelberg

The results of their research reveal a complex mixture of toxic and structural proteins that can explain the extraordinary toxicity and biophysical properties of these unique cells. They also show how the energy for discharging the toxin can be stored in the stinging cells and released at extraordinary speed.

With their poison cells, jellyfish and other cnidarians have developed one of the most venomous and differentiated cellular mechanisms in the animal kingdom. Stinging cells, also known as nematocysts or cnidocysts, are found in the outer cell layer of cnidarians and are used for capturing prey or for defence. They consist mainly of a stinging capsule, a giant secretory vesicle. Inside this organelle a long, barbed tubule is coiled up, which turns inside out like the finger of a glove during discharge, thus releasing the deadly poison into the prey. This mixture of previously unknown toxins paralyses the nervous system of the prey and destroys their cells. Injecting the toxins requires an effective mechanism. Studies have shown that the discharge of toxins is associated with an extremely high pressure of 15 megapascals, whereby the stylet, a thin barb, is able to penetrate even thick crustacean shells. The stylet is accelerated at a force of 5 million g in under 700 nanoseconds, making the discharge of toxins harpoon-like.

Up until now, the molecular components responsible for the biomechanical properties of these unique cellular weapons were largely unknown. The Heidelberg scientists used protein mass spectroscopy to study the cells of the Hydra magnipapillata freshwater polyp. The procedure afforded them a precise qualitative and quantitative analysis of the chemical composition of the substances, thus enabling them to map the nematocyst proteome of the Hydra. Prof. Holstein and Dr. Özbek’s research team were surprised at its complexity. The biologists discovered 410 proteins with venomous and lytic, but also adhesive or fibrous properties. The proteins of the stinging capsule wall contain hitherto unknown structural components that form a tissue-like matrix, a complex protein mesh. This structure of collagen and elastomers surpasses the elasticity and tensile strength of even spider’s silk.

These findings allow the Heidelberg researchers to explain how the energy for discharging the toxin can be stored in the stinging cells and then released from the elastic structure of the capsule wall in nanoseconds at an extraordinary speed. “The poison cells of the cnidarians represent an effective combination of the powerful molecular spring mechanism and a structure with extreme biophysical properties,” says Prof. Holstein. The studies also suggest that the organelles containing the injectable toxin have adopted the molecular properties of connective tissue proteins such as collagens during their development. According to Prof. Holstein, it was an unexpected solution in early evolution to develop such a sophisticated mechanism for prey capture and defence.

Original publication:
Prakash G. Balasubramanian, Anna Beckmann, Uwe Warnken, Martina Schnölzer, Andreas Schüler, Erich Bornberg-Bauer, Thomas W. Holstein, and Suat Özbek: Proteome of Hydra Nematocyst, Journal of Biological Chemistry, 23 March, 2012, doi:10.1074/jbc.M111.328203

Contact:
Prof. Dr. Thomas Holstein / PD Dr. Suat Özbek
Centre for Organismal Studies
Phone +49 6221 54-5679, -5638
thomas.holstein@cos.uni-heidelberg.de
suat.oezbek@cos.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>