Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly Folding Mistake

16.08.2013
Molecular mechanism of prion protein oligomerization at atomic resolution

Mad cow disease and its cousin Creutzfeld-Jakob disease cause fatal spongy changes in brain tissue. Today, we know that these diseases are caused by prions, proteins that are folded incorrectly.



A team of German researchers have now been able to follow how the diseased proteins aggregate and “infect” healthy ones on the atomic scale. Their report appears in the journal Angewandte Chemie.

How can a disease that is caused by a protein instead of a virus or bacterium be contagious? It is clear that incorrectly folded prion proteins must be able to deform their correctly folded analogues and to change their spatial structure. They transfer their own incorrect shape to the healthy proteins.

Normally, these proteins exist as monomers that are mostly wound into an alpha helix. When incorrectly folded, the protein has many regions containing beta sheets, structures that resemble an accordion, and has a tendency to self-assemble into larger aggregates. These amyloids cannot be broken down and thus form deposits in the brain’s tissue.

How this process works in detail has now been clarified. Kai Schlepckow and Harald Schwalbe at the Goethe University Frankfurt am Main have successfully used time-resolved NMR spectroscopic studies to follow what is happening to every individual amino acid as the prion protein molecules aggregate—an extremely complex process.

Their most interesting revelation is that the aggregation occurs in two steps. First, oligomers are formed from five to eight units. In the second step, these aggregate further into molecules made of up to 40 units that form fibrous structures. The first oligomerizations initially affect proteins in a largely unfolded state. Certain regions of the protein stiffen as the oligomerization proceeds. Different regions of the protein participate in different phases of the aggregation.

The researchers hope to use their new understanding to better determine what role is played by the specific mutations in the prion protein that seem to fuel initiation of this process. This may also provide a starting point for the development of effective drugs.

About the Author
Dr. Harald Schwalbe is Professor of Chemistry at the Johann Wolfgang Goethe University Frankfurt, Germany. His area of research is the study of dynamic states and conformational changes of proteins and RNA. To perform his experiments he develops new NMR spectroscopic techniques in order to examine processes such as the incorrect folding of prion proteins with the highest possible time resolution.
Author: Harald Schwalbe, Johann Wolfgang Goethe-Universität, Frankfurt am Main (Germany), http://schwalbe.org.chemie.uni-frankfurt.de/contact
Title: Molecular Mechanism of Prion Protein Oligomerization at Atomic Resolution
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201305184

Harald Schwalbe | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>