Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dead midges reveal living conditions of fish

05.04.2011
Microscopic remains of dead Phantom midge larvae (Chaoborus spp.) may explain a few hundred years of history of the living conditions of fish, acidification and fish death in Swedish lakes. Researchers at the University of Gothenburg, Sweden, have developed a method of using lake-bottom sediments to show when and how fish life disappeared from acidified lakes – invaluable knowledge for lake restorations in acidified regions.

“It is actually just like a journey through time. Fish hardly leave any remains of their own when they die, but if we instead study the presence of organisms that are affected by fish, we can find clear traces. By studying mandibles (mouth parts) from Chaoborus larvae in lake sediments, we can recreate the history of the lake back to the early 19th century,” says Fredrik Palm of the Department of Zoology at the University of Gothenburg.

Acidification of soil and water is one of the greatest environmental problems of modern times. A large proportion of Swedish lakes show clear signs of acidification, resulting in extensive fish death and severely reduced biodiversity.

Recent research has pointed to a clear correlation between fish death and the presence of Chaoborus larvae in lakes. Mandibles from Chaoborus larvae preserved in lake-bottom sediments can therefore be used to identify fish death and other fish changes in severely acidified lakes.

History in the rear-view mirror
The new method makes it possible to study the effects of acidification in lakes where no samples have previously been collected and where there are no historical data on fish community alterations. As it is also possible to determine the age of sediment samples, this method can additionaly reveal when different changes have occurred.
“By analysing Chaoborus mandibles that we recover in the bottom sediments we can tell how different fish communities have changed. Not only can we infer whether fish has disappeared, we can also see how different fish species have been affected. Roach, for example, are more sensitive to acidification than perch, and we have been able to show whether lakes historically have contained cyprinid fish or not. Remains of acid sensitive zooplankton can simultaneously be used to show trends of progressive acidification in lakes.

Providing a basis for restoration.

As the method reveals how the fish community in a lake has changed over the last few centuries, it can also be used to turn the clock back as a way of deciding how biological restoration of an acidified lake should proceed. The historical perspective of the method also makes it possible to analyse natural variations in lake ecosystems.

Palm and his colleagues have therefore carried out their studies in the counties of Västra Götaland and Bohuslän, Sweden, focusing in primarily on the Lake Gårdssjön area in Ucklum, which has been a centre of Swedish acidification research for many decades.

Journal: Journal of Paleolimnology 45: 101-113.
Authors: Palm, F., El-Daoushy, F., Svensson, J-E., 2011.
Titles: Fragmented subfossil Chaoborus mandibles reveal periods of cyprinid presence in lake histories.
Contact:
Fredrik Palm, Department of Zoology, University of Gothenburg
+46 31-786 3668
fredrik.palm@zool.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/24148

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>