Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deactivating a cancer growth promoter

26.09.2008
Three enzymes called phosphatases that shut down a molecule called SRC-3 (steroid receptor coactivator 3) could provide a new pathway for fighting cancer, particularly tumors of the breast and prostate, said researchers at Baylor College of Medicine in a report that appears in the current issue of the journal Molecular Cell.

"This kind of information provides a target for the production of drugs against cancer," said Dr. Bert O'Malley, chair of molecular and cellular biology at BCM. "One can already find drugs that stimulate or inhibit phosphatases in other disease processes."

O'Malley and his colleagues had already determined that SRC-3 is an oncogene or cancer-promoting gene as well as a master switch in the cell. Phosphorylation or adding a phosphate molecule activates its cancer-promoting activities. In this study, the researchers identified three phosphatases that promote removal of the phosphate and thus halt the activity of SRC-3.

Of the three identified, PDXP, PP1, and PP2A, PP1 not only stops SRC-3 activity, it also stops the degradation of the co-activator. SRC-3 then builds up in cells, but without the phosphate, it is a dead molecule that does not function and may even further inhibit tumor growth.

Providing new avenues for fighting cancer is an important outcome of basic science, said O'Malley, who is also associate director for basic research in The Dan L. Duncan Cancer Center at BCM. "In cancer right now, many drugs work the same way. They are toxic to all cells. Because the cancer cell grows faster, the drug is more toxic, but there is nothing selective about the process. In the past decade, we have realized that there has to be a better, more intellectual approach to cancer. In fact, some already exist."

For example, the drug Herceptin targets breast cancer cells that carry the protein Her2/neu. Finding drugs that stop the activation of SRC-3, found at high levels in some breast tumors, could provide another avenue of treatment that could target just the cancer cells.

One study, published by Dr. C. Kent Osborne, director of the Lester and Sue Smith Breast Center at BCM, showed that women whose tumors have both the Her2/neu protein and high levels of SRC-3 are less likely to be helped by drugs such as tamoxifen and more likely to die quickly of their disease. Finding a way to stop Her2/neu and shut down SRC-3 could make the tumor cell's growth controllable, O'Malley said.

Kimberlee Norton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.molecule.org
http://www.bcm.edu/fromthelab

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>