Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Day in and day out

27.07.2009
Fluctuations in the levels of various molecules in the blood provide a reliable indicator of the body’s internal clock

Without consciously checking your watch, your body knows the time by maintaining its own internal clock that tracks the day–night cycle through so-called circadian rhythms. Accordingly, disruption of these cycles, whether due to transient effects of jet-lag or disorders such as familial advanced sleep-phase syndrome, can profoundly affect an individual’s ability to maintain a normal pattern of sleeping and waking.

Circadian rhythms also affect a number of other physiological activities, including manifestations of disease and the body’s response to therapeutics. “Interestingly, some cancer growth is under circadian clock control,” says Yoichi Minami of the RIKEN Center for Developmental Biology in Kobe. “This suggests that if we take drugs with precise timing, we can reduce unwanted effects.”

Inspired by the work of 18th Century botanist Karl Linné, who assembled a literal circadian clock composed of flower species that open and close their petals at specific times of day, Minami and colleagues Takeya Kasukawa, Yuji Kakazu, Tomoyoshi Soga and Hiroki Ueda recently set about constructing an analogous ‘body clock’ for mammals.

To achieve this, they applied sophisticated analytical chemistry techniques to characterize time-of-day-specific fluctuations in the levels of a broad variety of small molecules circulating in the mouse bloodstream1. They performed their analysis with mice that were maintained either in fixed light–dark cycles, or in constant darkness, to distinguish variability resulting from external environmental time cues versus purely internal circadian timetables.

Depending on the analytical method applied, the researchers were able to detect between 150 and 300 compounds that appeared to show circadian regulation under both conditions. Once the oscillations of these various metabolites had been characterized, they were able to apply these patterns to determine the body-time at which a blood sample was collected. Importantly, the accuracy of these measurements was not affected by differences in age, sex or food consumption, and the team was even able to directly observe relative shifts in the circadian clock resulting from simulated jet-lag.

These findings now clear the way for constructing an equivalent internal timetable for people. “One of our main goals is translation of circadian clock research from lab to clinic,” says Kasukawa. “If we can show the validity of our method in human beings … our method will contribute to the diagnosis of disease caused by circadian clock dysfunction [and] speed up development of circadian clock-conditioning drugs.”

Reference

1. Minami, Y., Kasukawa, T., Kakazu, Y., Iigo, M., Sugimoto, M., Ikeda, S., Yasui, A., van der Horst, G.T.J., Soga, T. & Ueda, H.R. Measurement of internal body time by blood metabolomics. Proceedings of the National Academy of Sciences USA 106, 9890–9895 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Systems Biology

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/752/
http://www.researchsea.com

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>