Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Day in and day out

Fluctuations in the levels of various molecules in the blood provide a reliable indicator of the body’s internal clock

Without consciously checking your watch, your body knows the time by maintaining its own internal clock that tracks the day–night cycle through so-called circadian rhythms. Accordingly, disruption of these cycles, whether due to transient effects of jet-lag or disorders such as familial advanced sleep-phase syndrome, can profoundly affect an individual’s ability to maintain a normal pattern of sleeping and waking.

Circadian rhythms also affect a number of other physiological activities, including manifestations of disease and the body’s response to therapeutics. “Interestingly, some cancer growth is under circadian clock control,” says Yoichi Minami of the RIKEN Center for Developmental Biology in Kobe. “This suggests that if we take drugs with precise timing, we can reduce unwanted effects.”

Inspired by the work of 18th Century botanist Karl Linné, who assembled a literal circadian clock composed of flower species that open and close their petals at specific times of day, Minami and colleagues Takeya Kasukawa, Yuji Kakazu, Tomoyoshi Soga and Hiroki Ueda recently set about constructing an analogous ‘body clock’ for mammals.

To achieve this, they applied sophisticated analytical chemistry techniques to characterize time-of-day-specific fluctuations in the levels of a broad variety of small molecules circulating in the mouse bloodstream1. They performed their analysis with mice that were maintained either in fixed light–dark cycles, or in constant darkness, to distinguish variability resulting from external environmental time cues versus purely internal circadian timetables.

Depending on the analytical method applied, the researchers were able to detect between 150 and 300 compounds that appeared to show circadian regulation under both conditions. Once the oscillations of these various metabolites had been characterized, they were able to apply these patterns to determine the body-time at which a blood sample was collected. Importantly, the accuracy of these measurements was not affected by differences in age, sex or food consumption, and the team was even able to directly observe relative shifts in the circadian clock resulting from simulated jet-lag.

These findings now clear the way for constructing an equivalent internal timetable for people. “One of our main goals is translation of circadian clock research from lab to clinic,” says Kasukawa. “If we can show the validity of our method in human beings … our method will contribute to the diagnosis of disease caused by circadian clock dysfunction [and] speed up development of circadian clock-conditioning drugs.”


1. Minami, Y., Kasukawa, T., Kakazu, Y., Iigo, M., Sugimoto, M., Ikeda, S., Yasui, A., van der Horst, G.T.J., Soga, T. & Ueda, H.R. Measurement of internal body time by blood metabolomics. Proceedings of the National Academy of Sciences USA 106, 9890–9895 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Systems Biology

Saeko Okada | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>