Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data suggest 'jumping genes' play a significant role in gene regulatory networks

17.02.2009
Research performed in the Center for Biomolecular Science & Engineering (CBSE) at the University of California, Santa Cruz, suggests that mobile repetitive elements--also known as transposons or "jumping genes"--do indeed affect the evolution of gene regulatory networks.

David Haussler, CBSE director and distinguished professor of biomolecular engineering at UCSC's Jack Baskin School of Engineering, said CBSE research teams are finding evidence that the early theories of Nobel Prize winner Barbara McClintock, later modeled by Roy Britten and Eric Davidson, are correct. Haussler will discuss these findings in a presentation on "Transposon-induced rewriting of vertebrate gene regulation" at the annual meeting of the American Association for the Advancement of Science (AAAS) in Chicago.

"Comparison of the human genome with the genomes of other species reveals that at least five percent of the human genome has been under negative selection during most of mammalian evolution," Haussler said. "We believe that this five percent is, therefore, likely to be functional."

Coding exons and structural RNA genes stand out because of their distinctive pattern of base substitutions and "indels"--the insertions and deletions of nucleic acid bases that can change the message in a genome. According to Haussler, however, most of the DNA under negative selection in vertebrate genomes does not appear to be transcribed and shares no sequence similarity with the genomes of invertebrates.

"Our research suggests that many of these elements serve as distal enhancers for developmental genes," Haussler said. "A significant amount of the gene regulatory material appears to have indeed been put into place by ancient transposons."

The Center for Biomolecular Science & Engineering (CBSE) at the University of California, Santa Cruz, fosters new approaches to discovery in human health. With interdisciplinary research and academic programs spanning the Baskin School of Engineering and the Division of Physical and Biological Sciences, the center supports a vast array of biological and engineering research that is fueling advances in biotechnology and medicine. The center is also home to the UCSC Genome Browser, a crucial resource for the international scientific community.

The Jack Baskin School of Engineering at UCSC prepares technologists--and sponsors technology--for our changing world. Founded in 1997, Baskin Engineering trains students in six future-focused areas of engineering: biotechnology/information technology/ nanotechnology; bioengineering; information and communication infrastructure; mathematical and statistical modeling; software and services engineering; and system design. Baskin Engineering faculty conduct industry-leading research that is improving the way the world does business, treats the environment, and nurtures humanity.

Contacts:
Mary Trigiani (831) 459-4495; mtrigiani@soe.ucsc.edu
Tim Stephens (831) 459-2495; stephens@ucsc.edu

Mary Trigiani | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>