Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data suggest 'jumping genes' play a significant role in gene regulatory networks

17.02.2009
Research performed in the Center for Biomolecular Science & Engineering (CBSE) at the University of California, Santa Cruz, suggests that mobile repetitive elements--also known as transposons or "jumping genes"--do indeed affect the evolution of gene regulatory networks.

David Haussler, CBSE director and distinguished professor of biomolecular engineering at UCSC's Jack Baskin School of Engineering, said CBSE research teams are finding evidence that the early theories of Nobel Prize winner Barbara McClintock, later modeled by Roy Britten and Eric Davidson, are correct. Haussler will discuss these findings in a presentation on "Transposon-induced rewriting of vertebrate gene regulation" at the annual meeting of the American Association for the Advancement of Science (AAAS) in Chicago.

"Comparison of the human genome with the genomes of other species reveals that at least five percent of the human genome has been under negative selection during most of mammalian evolution," Haussler said. "We believe that this five percent is, therefore, likely to be functional."

Coding exons and structural RNA genes stand out because of their distinctive pattern of base substitutions and "indels"--the insertions and deletions of nucleic acid bases that can change the message in a genome. According to Haussler, however, most of the DNA under negative selection in vertebrate genomes does not appear to be transcribed and shares no sequence similarity with the genomes of invertebrates.

"Our research suggests that many of these elements serve as distal enhancers for developmental genes," Haussler said. "A significant amount of the gene regulatory material appears to have indeed been put into place by ancient transposons."

The Center for Biomolecular Science & Engineering (CBSE) at the University of California, Santa Cruz, fosters new approaches to discovery in human health. With interdisciplinary research and academic programs spanning the Baskin School of Engineering and the Division of Physical and Biological Sciences, the center supports a vast array of biological and engineering research that is fueling advances in biotechnology and medicine. The center is also home to the UCSC Genome Browser, a crucial resource for the international scientific community.

The Jack Baskin School of Engineering at UCSC prepares technologists--and sponsors technology--for our changing world. Founded in 1997, Baskin Engineering trains students in six future-focused areas of engineering: biotechnology/information technology/ nanotechnology; bioengineering; information and communication infrastructure; mathematical and statistical modeling; software and services engineering; and system design. Baskin Engineering faculty conduct industry-leading research that is improving the way the world does business, treats the environment, and nurtures humanity.

Contacts:
Mary Trigiani (831) 459-4495; mtrigiani@soe.ucsc.edu
Tim Stephens (831) 459-2495; stephens@ucsc.edu

Mary Trigiani | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>