Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data reveal extent of genetic overlap between major mental disorders

12.08.2013
Schizophrenia, bipolar disorder share the most common genetic variation

The largest genome-wide study of its kind has determined how much five major mental illnesses are traceable to the same common inherited genetic variations.


Common inherited genetic variation (single nucleotide polymorphisms, or SNPs) accounted for up to about 28 percent of the risk for some disorders, such as ADHD (dark green). Among pairs of disorders (light green), schizophrenia and bipolar disorder (SCZ-BPD) shared about 16 percent of the same common genetic variation (coheritabilities).

Credit: Cross-Disorder Group of the Psychiatric Genomics Consortium

Researchers funded in part by the National Institutes of Health found that the overlap was highest between schizophrenia and bipolar disorder; moderate for bipolar disorder and depression and for ADHD and depression; and low between schizophrenia and autism. Overall, common genetic variation accounted for 17-28 percent of risk for the illnesses.

"Since our study only looked at common gene variants, the total genetic overlap between the disorders is likely higher," explained Naomi Wray, Ph.D., University of Queensland, Brisbane, Australia, who co-led the multi-site study by the Cross Disorders Group of the Psychiatric Genomics Consortium (PGC), which is supported by the NIH's National Institute of Mental Health (NIMH). "Shared variants with smaller effects, rare variants, mutations, duplications, deletions, and gene-environment interactions also contribute to these illnesses."

Dr. Wray, Kenneth Kendler, M.D., of Virginia Commonwealth University, Richmond, Jordan Smoller, M.D., of Massachusetts General Hospital, Boston, and other members of the PGC group report on their findings August 11, 2013 in the journal Nature Genetics.

"Such evidence quantifying shared genetic risk factors among traditional psychiatric diagnoses will help us move toward classification that will be more faithful to nature," said Bruce Cuthbert, Ph.D., director of the NIMH Division of Adult Translational Research and Treatment Development and coordinator of the Institute's Research Domain Criteria (RDoC) project, which is developing a mental disorders classification system for research based more on underlying causes.

Earlier this year, PGC researchers – more than 300 scientists at 80 research centers in 20 countries – reported the first evidence of overlap between all five disorders. People with the disorders were more likely to have suspect variation at the same four chromosomal sites. But the extent of the overlap remained unclear. In the new study, they used the same genome-wide information and the largest data sets currently available to estimate the risk for the illnesses attributable to any of hundreds of thousands of sites of common variability in the genetic code across chromosomes. They looked for similarities in such genetic variation among several thousand people with each illness and compared them to controls – calculating the extent to which pairs of disorders are linked to the same genetic variants.

The overlap in heritability attributable to common genetic variation was about 15 percent between schizophrenia and bipolar disorder, about 10 percent between bipolar disorder and depression, about 9 percent between schizophrenia and depression, and about 3 percent between schizophrenia and autism.

The newfound molecular genetic evidence linking schizophrenia and depression, if replicated, could have important implications for diagnostics and research, say the researchers. They expected to see more overlap between ADHD and autism, but the modest schizophrenia-autism connection is consistent with other emerging evidence.

The study results also attach numbers to molecular evidence documenting the importance of heritability traceable to common genetic variation in causing these five major mental illnesses. Yet this still leaves much of the likely inherited genetic contribution to the disorders unexplained – not to mention non-inherited genetic factors. For example, common genetic variation accounted for 23 percent of schizophrenia, but evidence from twin and family studies estimate its total heritability at 81 percent. Similarly, the gaps are 25 percent vs. 75 percent for bipolar disorder, 28 percent vs. 75 percent for ADHD, 14 percent vs. 80 percent for autism, and 21 percent vs. 37 percent for depression.

Among other types of genetic inheritance known to affect risk and not detected in this study are contributions from rare variants not associated with common sites of genetic variation. However, the researchers say that their results show clearly that more illness-linked common variants with small effects will be discovered with the greater statistical power that comes with larger sample sizes.

"It is encouraging that the estimates of genetic contributions to mental disorders trace those from more traditional family and twin studies. The study points to a future of active gene discovery for mental disorders" said Thomas Lehner, Ph.D., chief of the NIMH Genomics Research Branch, which funds the project.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>