Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond Darwin: Evolving new functions

29.06.2011
A recent Kavli Futures Symposium focused on the progress, and promise, of evolving biological functions in the lab. Now, 3 Symposium participants discuss this remarkable research, and how it's drawing together diverse scientific fields

At a recent Kavli Futures Symposium, 19 experts from a diverse range of fields discussed the promise of using the lab to understand and exploit the evolution of organisms -- progress that may one day lead to new vaccines or other biotechnology products.

Now, three of the participants have joined in a discussion of the issues and topics raised during the meeting: Michael Brenner, Professor of Applied Mathematics and Applied Physics at the School of Engineering and Applied Sciences and member of the Kavli Institute for Bionano Science and Technology, Harvard University; Stephen Quake, Professor of Applied Physics and Bioengineering at Stanford University and Investigator, Howard Hughes Medical Institute; and Mark Martindale, Director of the Kewalo Marine Laboratory, University of Hawaii.

In the dialogue, the researchers discuss how investigators in several different scientific fields are now exploring how organisms evolve new functions in a much more detailed way. They also discuss how new experimental methods and tools are expected to greatly aid those explorations by enabling the quick, inexpensive and complex analyses that are needed for laboratory investigations of evolution.

The hope is that the synergy of all these fields can one day lead to a better understanding of how complex new structures, such as the eye or even the entire nervous system, evolved and enabled new functions. These findings are likely to further advances in directed evolution, with such practical applications as improved vaccines or bacteria engineered to produce oil from sugar, or to carry out other useful new functions. "All of the same principles and concepts that apply to studying evolution over the hundred-million-year time scale should also describe what goes on in your immune system over the course of much briefer periods -- years, months, weeks," said Quake. "I'm very excited about trying to take general concepts and apply them to areas that haven't previously been explored as evolutionary models."

Brenner concurred on this point. "Every method people have for thinking about how to combat disease or anything else is developed under an intellectual paradigm. If one could invent new concepts for how evolutionary change occurs, then they could really change the way you think about those problems."

Read story: http://www.kavlifoundation.org/kavli-futures-symposium-evolution-new-functions-main

James Cohen | EurekAlert!
Further information:
http://www.kavlifoundation.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>