Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond Darwin: Evolving new functions

29.06.2011
A recent Kavli Futures Symposium focused on the progress, and promise, of evolving biological functions in the lab. Now, 3 Symposium participants discuss this remarkable research, and how it's drawing together diverse scientific fields

At a recent Kavli Futures Symposium, 19 experts from a diverse range of fields discussed the promise of using the lab to understand and exploit the evolution of organisms -- progress that may one day lead to new vaccines or other biotechnology products.

Now, three of the participants have joined in a discussion of the issues and topics raised during the meeting: Michael Brenner, Professor of Applied Mathematics and Applied Physics at the School of Engineering and Applied Sciences and member of the Kavli Institute for Bionano Science and Technology, Harvard University; Stephen Quake, Professor of Applied Physics and Bioengineering at Stanford University and Investigator, Howard Hughes Medical Institute; and Mark Martindale, Director of the Kewalo Marine Laboratory, University of Hawaii.

In the dialogue, the researchers discuss how investigators in several different scientific fields are now exploring how organisms evolve new functions in a much more detailed way. They also discuss how new experimental methods and tools are expected to greatly aid those explorations by enabling the quick, inexpensive and complex analyses that are needed for laboratory investigations of evolution.

The hope is that the synergy of all these fields can one day lead to a better understanding of how complex new structures, such as the eye or even the entire nervous system, evolved and enabled new functions. These findings are likely to further advances in directed evolution, with such practical applications as improved vaccines or bacteria engineered to produce oil from sugar, or to carry out other useful new functions. "All of the same principles and concepts that apply to studying evolution over the hundred-million-year time scale should also describe what goes on in your immune system over the course of much briefer periods -- years, months, weeks," said Quake. "I'm very excited about trying to take general concepts and apply them to areas that haven't previously been explored as evolutionary models."

Brenner concurred on this point. "Every method people have for thinking about how to combat disease or anything else is developed under an intellectual paradigm. If one could invent new concepts for how evolutionary change occurs, then they could really change the way you think about those problems."

Read story: http://www.kavlifoundation.org/kavli-futures-symposium-evolution-new-functions-main

James Cohen | EurekAlert!
Further information:
http://www.kavlifoundation.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>