Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark Matter Made Visible Before the Final Cut

09.01.2013
Research findings from the University of North Carolina School of Medicine are shining a light on an important regulatory role performed by the so-called dark matter, or “junk DNA,” within each of our genes.

The new study reveals snippets of information contained in dark matter that can alter the way a gene is assembled.

“These small sequences of genetic information tell the gene how to splice, either by enhancing the splicing process or inhibiting it. The research opens the door for studying the dark matter of genes. And it helps us further understand how mutations or polymorphisms affect the functions of any gene,” said study senior author, Zefeng Wang, PhD, assistant professor of pharmacology in the UNC School of Medicine and a member of UNC Lineberger Comprehensive Cancer Center.

The study is described in a report published in the January 2013 issue of the journal Nature Structural & Molecular Biology.

The findings may be viewed in terms of the film industry’s editorial process where snippets of celluloid are spliced, while others end up unused on the proverbial cutting room floor.

Taken from a DNA point of view, not every piece of it in each human gene encodes for a functional protein; only about 10 percent does, in coding regions called “exons.” The other 90 percent of the stuff that fills the intervening regions are longer stretches of dark matter known as “introns.”

But something mysterious happens to introns during the final processing of messenger RNA (mRNA), the genetic blueprint that’s sent from the cell’s nucleus to its protein factory. Only particular exons may be included within the final mRNA produced from that gene, whereas the introns are cut out and destroyed.

It’s therefore easier to understand why more scientific attention has been given to exons. “When people are looking at the genetics of a disease, most of the time they’re looking for the change in the coding sequence,” Wang said. “But 90 percent of the sequence is hidden in the gene’s introns. So when you study gene variants or polymorphisms that cause human disease, you can only explain the part that’s in the exon. Yet the majority remains unexplainable because they’re in the introns.”

Following completion of the genome sequencing projects, subsequent DNA and RNA sequencing revealed the existence of more than one splice variant, or isoform, for 90 percent of human genes. During messenger RNA processing, most human genes are directed to be cut and pasted into different functional isoforms.

In a process called alternative splicing, a single gene could code for multiple proteins with different biological functions. In this way, alternative splicing allows the human genome to direct the synthesis of many more proteins than would be expected from its 20,000 protein-coding genes.

“And those different versions sometimes function differently or in opposite ways,” Wang said. “This is a tightly regulated process, and a great number of human diseases are caused by the ‘misregulation’ of splicing in which the gene was not cut and pasted correctly.”

Wang’s research colleagues identified “intronic splicing regulatory elements.” These essentially recruit protein factors that can either enhance or inhibit the splicing process.

Their discovery was accomplished by inserting an intron into a green fluorescent protein (GFP) “reporter” gene. These introns of the reporter gene carried random DNA sequences. When the reporter is screened and shows green it means that portion of the intron is spliced.

“The default is dark,” so any splicing enhancer or silencer can turn it green,” Wang explains. “In this unbiased way we can recover hundreds of sequences of inhibited or enhanced splicing.”

The study collaborators put together a library of cells that contain the GFP reporter with the random sequence inserted. Thus, when researchers looking at the intron try to determine what a particular snippet of genetic information does and its effect on gene function, they can refer to the splicing regulatory library of enhancers or silencers.

“So it turns out that the sequencing element in both exons and introns can regulate the splicing process, Wang says. “We call it the splicing code, which is the information that tells the cell to splice one way or the other. And now we can look at these variant DNA sequences in the intron to see if they really affect splicing, or change the coding pattern of the exon and, as a result, protein function.”

Collaborators in this study with Zefeng Wang are Yang Wang in the department of pharmacology and member of the UNC Lineberger Comprehensive Cancer Center; Meng Ma, Anhui University, Hefei, China; and Xinshu Xiao, University of California, Los Angeles.

Support for the research comes from the American Heart Association and the National Cancer Institute, a component of the National Institutes of Health.

Les Lang | Newswise
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>