Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark Ages scourge enlightens modern struggle between man and microbes

14.12.2012
Scientists discover how Yersinia pestis avoids setting off immune system's early infection-alarm

The plague-causing bacteria Yersinia pestis evades detection and establishes a stronghold without setting off the body's early alarms.


Yersinia (gray) infects two macrophages. In the upper right pyroptosis was subverted via YopM, in the bottom left, pyroptosis is induced and an inflammasome is formed (white).

Credit: Brad Cookson lab

New discoveries reported this week help explain how the stealthy agent of Black Death avoids tripping a self-destruct mechanism inside germ-destroying cells.

The authors of the study, appearing in the Dec. 13 issue of Cell Host & Microbe, are Dr. Christopher N. LaRock of the University of Washington Department of Microbiology and Dr. Brad Cookson, UW professor of microbiology and laboratory medicine.

Normally, certain defender cells are programmed to burst if they are either invaded by or detect the presence of pathogens, Cookson explained. This host defense mechanism called pyroptosis ("going up in flames") eliminates places for the germs to reproduce. As it splits open, the cell spills a cauldron of antimicrobial chemicals and emits signals to alert of an attack and its precise location. Tissues become inflamed as more cells arrive to fight the infection.

The bacteria are widely believed to be behind the great pestilences of the Middle Ages in the 1300s. The pathogen had evolved a tactic to delay provoking people's protective inflammatory response until it was too late. Plague claimed an estimated 30 percent to 50 percent of Europe's 14th century population.

"People and pathogens have been in an eternal struggle since the dawn of humanity," Cookson said. With a hand over hand gesture he explained, "Humans continuously ratchet up their defenses, and germs repeatedly find a way around them."

During several medieval epidemics, the plague started in rats. High-jumping fleas transmitted it to and between humans. It commonly caused lymph nodes to rupture. Respiratory forms were more deadly. They damaged the lungs and were spread by sneezing. Plague bacteria in the blood stream ended lives through sepsis, in which the burden of infection overwhelms the body.

Today, the plague-causing bacteria are still circulating in the world. It is held at bay by sanitation measures and drug treatment.

Plague is now rare, with fewer than 15 infections annually in the United States. The number of cases outside the United States is significantly larger, but not precisely known. Plague therefore remains of scientific interest for several reasons.

The Yersinia survival strategy against the programmed death that could kill it and its host cell may offer ideas for vaccine development, Cookson said. At present, no vaccine exists against the plague. Yesinia is of concern as a potential biological warfare pathogen because it can be aerosolized and unsuspectingly breathed into the lungs. Vaccines are being sought to offer widespread public safety, as are methods for enhancing people's overall infection-fighting capacity.

Yersinia's techniques for modulating an inflammatory response also offer scientists an overarching perspective on a fundamental aspect of a variety of important diseases.

"Many medical problems stem from too much or too little inflammatory reaction," Cookson said. People who launch an insufficient inflammatory response, or whose inflammatory response is suppressed by medications, are prone to viral, bacterial and fungal infections.

"On the other hand, excessive or improperly regulated inflammatory responses are responsible for a large number of chronic conditions," Cookson said. These include vascular flare-ups leading to stroke or heart attack, and autoimmune diseases, among them lupus, juvenile diabetes, ulcerative colitis and myasthenia gravis. Severe injury also can promote life-threatening lung inflammation.

Additionally, plague isn't the only pathogen to enhance its virulence by sidestepping the inflammatory cell death program. Several other dangerous germs do the same, but in different ways.

Usually immune system clean-up cells that have been breached by an infection assemble a molecular platform called an inflammasome. This assembly, the researchers explained, activates a powerful, protein-cleaving enzyme called caspase-1. The enzyme is made ready to go in the presence of noxious stimuli, including germs, inorganic irritants, and pore-forming toxins.

To survive, Yersinia pestis must disarm caspase-1. Until the present study, bacterial molecules that directly modulate the inflammasome had not yet been reported. LaRock and Cookson were able to identify a leucine-rich protein secreted by Yersinia pestis that binds and disables its arch-enemy, the caspase-1 enzyme.

The potent substance, called Yop M, preempts the activity of caspase-1 and sequesters the enzyme to arrest the development of the inflammasome. As a consequence, the cell fails to sacrifice itself to get rid of the Yersinia and to warn other disease-fighting cells of the infection.

According to the researchers, the Yop M-mediated inhibition of caspase-1 is required for Yersinia to subvert immune signaling, delay inflammation and provoke severe illness. Its dual mechanism for blocking inflammatory cell death, by blocking enzymatic activity and inflammasome maturation, is distinctive.

While caspase-1 is helpful in combating a number of other microbial infections, several researchers have reported it to be harmful when its activation is aberrant or poorly controlled. Faulty caspase-1 regulation is implicated in several inflammatory disorders. Learning how pathogens manage caspase-1 to their advantage may suggest treatments to limiting its excess activity.

The research was funding by National Institutes of Health research grants HG02360 and AI057141 and National Institute of Health training grant AI055396. The study also received assistance from the Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases, which seeks countermeasures against pathogens of national importance.

The Dec. 13 Cell Host & Microbe paper is "The Yersinia Virulence Effector YopM Binds Caspase-1 to Arrest Inflammasome Assembly and Processing."

Leila Gray | EurekAlert!
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>