Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danger of cancerous tissue development in chromosomal abnormalities

22.11.2010
Hebrew University research carries cautionary warning for future stem cell applications

Research work carried out at the Hebrew University of Jerusalem arouses a cautionary warning in the growing field of the development of stem cells as a means for future treatment of patients through replacement of diseased or damaged tissues by using the patient’s own stem cells. The research indicates a possible danger of cancerous tissue development in the use of such cells.

Embryonic stem cells, which are undifferentiated cells, have the potential to develop into all cell types of the adult body, and thousands of researchers all over the world are working to develop the techniques which will make possible their eventual application.

Research in the field has been carried out initially using embryonic stem cells taken from human embryos. However, a breakthrough occurred when, a number of years ago, Japanese scientists succeeded in creating embryonic-like stem cells from mature human cells through an induced “reprogramming” process. This made it possible to obtain stem cells from a patient which can be used in his or her own treatment, thus avoiding the possibility of cell rejection. These cells are called induced pluripotent stem (iPS) cells.

In order for stem cells to be used in the clinic, however, they must be raised in cultures for an extended period. During this period, it has been observed that embryonic stems cells underwent chromosomal changes, which included changes that characterize cancerous tumor growth.

Research that has been carried out in the laboratory headed by Nissm Benvenisty, the Herbert Cohn Professor of Cancer Research at the Silberman Institute of Life Sciences at the Hebrew University of Jerusalem, has now shown that the iPS cells also undergo abnormal chromosomal changes in culture.

Prof. Benvenisty, together with his post-doctoral fellow Yoav Mayshar and his doctoral student Uri Ben-David, developed a new analytical method for determining the genetic structure of the chromosomes in the iPS cells through determining the cellular patterns of gene expression.

Each cell generally bears two copies of each chromosome in the genome. The Hebrew University researchers discovered that, in time, three copies of chromosomes (trisomy) began to appear in the culture, and that the cells with the extra chromosome were able to rapidly overpower the other, normal cells in the culture. Such trisomies are present in abnormal tissue development, including cancerous growths.

The researchers examined over 100 cell lines which were published by 18 different laboratories around the world, in addition to the iPS cultures raised in their own laboratory, and in this way were able to solidly verify a great number of chromosomal changes in cell lines that until now were considered normal.

In an article published in Cell Stem Cell journal, the Hebrew University researchers have reported their discovery. They noted that the chromosomal changes were not incidental, but rather appeared systematically on chromosome 12 and involved up-regulation of specific genes which reside on that chromosome. This discovery is liable to hinder progress on the development of the use of human iPS cells in future therapy because of the tumorigenic danger involved.

“Our findings show that human iPS cells are not stable in culture, as was previously thought, and require reassessment of the chromosomal structure of these cells,” said Prof. Benvenisty. “Also, our work shows for the first time the gene expression changes that accompany these chromosomal aberrations found in the culture, paving the way for our beginning to understand the mechanism by which these changes occur.

“The chromosomal changes in these iPS cells require everyone to exercise great care in continuing to work with them, since these changes apparently will influence the differentiation potential and the tumorigenic risk of these cells.”

According to Prof. Benvenisty, “The method we have developed for identifying chromosomal changes through gene expression is likely to serve also in other work involving analysis of different kinds of cells, including cancer cells. It is relatively simple to use and enables one to observe the changes without having to directly analyze the DNA of the cells.” The discovery is patented by Yissum, the Technology Transfer Company of the Hebrew University of Jerusalem, which is currently searching for commercial partners for further research and development.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, Tel: 02-588-2904.

Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>