Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Damaged protein identified as early diagnostic biomarker for Alzheimer's disease in healthy adults

24.02.2010
Researchers at NYU School of Medicine have found that elevated cerebrospinal fluid levels of phosphorylated tau231 (P-tau231), a damaged tau protein found in patients with Alzheimer's disease, may be an early diagnostic biomarker for Alzheimer's disease in healthy adults.

The study published this month online by Neurobiology of Aging shows that high levels of P- tau231 predict future memory decline and loss of brain gray matter in the medial temporal lobe- a key memory center.

Prior studies found the medial temporal lobe to be the most vulnerable brain region in the early stages of Alzheimer's disease accumulating damaged tau proteins in the form of neurofibrillary tangles. Tangles are one of the signature indicators of Alzheimer's disease, in addition to beta amyloid plaques.

"Our research results show for the first time that elevated levels of P-tau 231 in normal individuals can predict memory decline and accompanying brain atrophy," said lead author Lidia Glodzik MD, PhD, assistant research professor, Department of Psychiatry at the Center for Brain Health and Center of Excellence on Brain Aging at NYU School of Medicine. "Our findings suggest that P-tau231 has the potential to be an important diagnostic tool in the pre-symptomatic stages of Alzheimer's disease."

Researchers evaluated 57 cognitively healthy older adults and studied the relationships between baseline cerebrospinal fluid biomarkers, longitudinal memory performance and longitudinal measures of the medial temporal lobe gray matter using Magnetic Resonance Imaging, or MRI. Two years later, researchers found that 20 out of 57 healthy adults showed decreased memory performance. The group with worsened memory had higher baseline levels of P-tau231 and more atrophy in the medial temporal lobe. The higher P-tau231 levels were associated with reductions in medial temporal lobe gray matter. Authors concluded that elevated P-tau231 predicts both memory decline and medial temporal lobe atrophy.

"Indentifying people at risk for Alzheimer's disease is the necessary first step in developing preventive therapies," said co-author Mony de Leon, EdD, professor, Department of Psychiatry and director of the Center for Brain Health at the Center of Excellence on Brain Aging at NYU School of Medicine and Research Scientist at the Nathan S. Kline Institute for Psychiatric Research. "This study shows that Alzheimer's disease pathology may be recognized in the normal stages of cognition.This observation may be of value in future studies investigating mechanisms that cause or accelerate dementia".

This study was done in collaboration with the Nathan S. Kline Institute for Psychiatric Research (NY), Applied NeuroSolutions, Inc. (IL), QiLu Hospital of Shandong University (China), The Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital (Sweden) and the Institute for Basic Research (NY).

Funding for this study was provided by the National Institutes of Health (NIH) in Bethesda, Maryland.

About NYU Langone Medical Center

NYU Langone Medical Center is one of the nation's premier centers of excellence in healthcare, biomedical research, and medical education. For over 168 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; the three hospitals of NYU Hospitals Center, Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such major programs as the NYU Cancer Institute, the NYU Child Study Center, and the Hassenfeld Children's Center for Cancer and Blood Disorders.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>