Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis makes airways more acidic, reduces bacterial killing

05.07.2012
The human airway is a pretty inhospitable place for microbes. There are numerous immune defense mechanisms poised to kill or remove inhaled bacteria before they can cause problems. But cystic fibrosis (CF) disrupts these defenses, leaving patients particularly susceptible to airway infection, which is the major cause of disease and death in CF.

Using a unique animal model of CF, a team of scientists from the University of Iowa has discovered a surprising difference between healthy airways and airways affected by CF that leads to reduced bacterial killing in CF airways. The finding directly links the genetic cause of CF -- mutations in a channel protein called cystic fibrosis transmembrane conductance regulator (CFTR) -- to the disruption of a biological mechanism that protects lungs from bacterial infection.

The study, published in the July 5 issue of Nature, shows that the thin layer of liquid coating the airways is more acidic in newborn pigs with CF than in healthy newborn pigs, and that the increased acidity (lower pH) reduces the ability of the liquid to kill bacteria. Moreover, making the airway liquid less acidic with a simple solution of baking soda restores bacterial killing in CF airways to almost normal levels.

Although the findings suggest that therapies that raise the pH of the airway surface liquid (ASL) may help prevent infection in CF, the researchers strongly caution that this discovery is at an early stage.

"Some have asked us if people with CF should inhale an aerosol that would raise the pH of the ASL," says Joseph Zabner, M.D., UI professor of internal medicine and senior study author. "At this point, we have no idea if that would help. And more importantly, it could be harmful."

"This was a very surprising finding," adds Alejandro Pezzulo, M.D., UI postdoctoral fellow and co-lead author of the study. "There have been many ideas as to what goes wrong in CF, but lack of a good experimental model has made it difficult to gain insight into how the disease gets started."

Unlike mouse models of the disease, the CF pigs develop lung disease that closely mimics what is seen in humans. Previous studies from the UI lab showed that although the airways of CF pigs are infection-free at birth, they are less able to get rid of bacteria than healthy airways and quickly become infected.

Testing bacterial killing in airways

The UI team, including Pezzulo and co-lead author Xiao Xiao Tang, Ph.D., a Howard Hughes Medical Institute postdoctoral research associate at the UI, developed a simple experiment to study bacterial killing by the ASL. They immobilized bacteria on a tiny gold grid and exposed these bacteria to ASL from CF-affected and healthy pigs.

The ASL from normal airways killed most of the bacteria very rapidly, whereas the ASL from CF-affected airways only killed about half of the bacteria, suggesting that in CF airways some bacteria would survive and go on to cause infection.

Further investigation showed that although many characteristics of the ASL in CF and non-CF pigs are similar, the ASL from CF airways is more acidic than the liquid from healthy airways.

When the scientists raised the pH of the ASL in CF pigs through inhalation of a solution of sodium bicarbonate (baking soda), the treated ASL was capable of killing most of the bacteria on the grid (just like ASL from normal airways). Conversely, lowering the pH of ASL from normal airways reduced bacterial killing. The finding confirms that pH is a critical factor for bacterial killing,

"This study explains why a defect in the CFTR channel protein leads to reduced bacterial killing and an airway host defense defect," Tang says. "Impaired bicarbonate transport because of the defective CFTR could cause increased acidity in the ASL, which the study shows reduces the ASL bacterial killing capability."

Potential clinical applications

Although the approach is not ready for clinical application, the study indicates that pH is a contributing factor in airway infection, suggesting that therapies that modify airway pH may potentially be helpful in preventing infection in CF patients.

In addition, the researchers believe that using the bacteria-coated grids to measure bacterial killing in airways might provide a simple way to test the effectiveness of other new CF therapies that currently are being developed.

The UI team also included Mark Hoegger; Mahmoud Abou Alaiwa; Shyam Ramachandran; Thomas Moninger; Phillip Karp, Christine Wohlford-Lenane; Henk Haagsman; Martin van Eijk; Botond Banfi; Alexander Horsewill; David Stoltz; Paul McCray; and Michael Welsh.

The work was supported in part by grants from the National Heart, Lung, and Blood Institute (HL51670, HL091842, HL102288), and the Cystic Fibrosis Foundation. Welsh is a Howard Hughes Medical Institute (HHMI) investigator.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>