Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis makes airways more acidic, reduces bacterial killing

05.07.2012
The human airway is a pretty inhospitable place for microbes. There are numerous immune defense mechanisms poised to kill or remove inhaled bacteria before they can cause problems. But cystic fibrosis (CF) disrupts these defenses, leaving patients particularly susceptible to airway infection, which is the major cause of disease and death in CF.

Using a unique animal model of CF, a team of scientists from the University of Iowa has discovered a surprising difference between healthy airways and airways affected by CF that leads to reduced bacterial killing in CF airways. The finding directly links the genetic cause of CF -- mutations in a channel protein called cystic fibrosis transmembrane conductance regulator (CFTR) -- to the disruption of a biological mechanism that protects lungs from bacterial infection.

The study, published in the July 5 issue of Nature, shows that the thin layer of liquid coating the airways is more acidic in newborn pigs with CF than in healthy newborn pigs, and that the increased acidity (lower pH) reduces the ability of the liquid to kill bacteria. Moreover, making the airway liquid less acidic with a simple solution of baking soda restores bacterial killing in CF airways to almost normal levels.

Although the findings suggest that therapies that raise the pH of the airway surface liquid (ASL) may help prevent infection in CF, the researchers strongly caution that this discovery is at an early stage.

"Some have asked us if people with CF should inhale an aerosol that would raise the pH of the ASL," says Joseph Zabner, M.D., UI professor of internal medicine and senior study author. "At this point, we have no idea if that would help. And more importantly, it could be harmful."

"This was a very surprising finding," adds Alejandro Pezzulo, M.D., UI postdoctoral fellow and co-lead author of the study. "There have been many ideas as to what goes wrong in CF, but lack of a good experimental model has made it difficult to gain insight into how the disease gets started."

Unlike mouse models of the disease, the CF pigs develop lung disease that closely mimics what is seen in humans. Previous studies from the UI lab showed that although the airways of CF pigs are infection-free at birth, they are less able to get rid of bacteria than healthy airways and quickly become infected.

Testing bacterial killing in airways

The UI team, including Pezzulo and co-lead author Xiao Xiao Tang, Ph.D., a Howard Hughes Medical Institute postdoctoral research associate at the UI, developed a simple experiment to study bacterial killing by the ASL. They immobilized bacteria on a tiny gold grid and exposed these bacteria to ASL from CF-affected and healthy pigs.

The ASL from normal airways killed most of the bacteria very rapidly, whereas the ASL from CF-affected airways only killed about half of the bacteria, suggesting that in CF airways some bacteria would survive and go on to cause infection.

Further investigation showed that although many characteristics of the ASL in CF and non-CF pigs are similar, the ASL from CF airways is more acidic than the liquid from healthy airways.

When the scientists raised the pH of the ASL in CF pigs through inhalation of a solution of sodium bicarbonate (baking soda), the treated ASL was capable of killing most of the bacteria on the grid (just like ASL from normal airways). Conversely, lowering the pH of ASL from normal airways reduced bacterial killing. The finding confirms that pH is a critical factor for bacterial killing,

"This study explains why a defect in the CFTR channel protein leads to reduced bacterial killing and an airway host defense defect," Tang says. "Impaired bicarbonate transport because of the defective CFTR could cause increased acidity in the ASL, which the study shows reduces the ASL bacterial killing capability."

Potential clinical applications

Although the approach is not ready for clinical application, the study indicates that pH is a contributing factor in airway infection, suggesting that therapies that modify airway pH may potentially be helpful in preventing infection in CF patients.

In addition, the researchers believe that using the bacteria-coated grids to measure bacterial killing in airways might provide a simple way to test the effectiveness of other new CF therapies that currently are being developed.

The UI team also included Mark Hoegger; Mahmoud Abou Alaiwa; Shyam Ramachandran; Thomas Moninger; Phillip Karp, Christine Wohlford-Lenane; Henk Haagsman; Martin van Eijk; Botond Banfi; Alexander Horsewill; David Stoltz; Paul McCray; and Michael Welsh.

The work was supported in part by grants from the National Heart, Lung, and Blood Institute (HL51670, HL091842, HL102288), and the Cystic Fibrosis Foundation. Welsh is a Howard Hughes Medical Institute (HHMI) investigator.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>