Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis bacteria could help fight back against antibiotic resistance

31.05.2011
A bacteria which infects people with cystic fibrosis could help combat other antibiotic-resistant microbes, according to a team from Cardiff and Warwick Universities.

Continuous use of existing antibiotics means that resistant bacteria are now causing major health problems all over the world. New antibiotics are urgently needed to combat the emergence of multidrug-resistant bacteria such as the MRSA superbug.

Now a surprising source of hope has emerged in the form of Burkholderia, a group of bacteria which can cause severe lung infections in people with the genetic disorder cystic fibrosis. However, the Cardiff and Warwick team has now discovered antibiotics from Burkholderia are effective against MRSA and even other cystic fibrosis infecting bacteria.

Dr Eshwar Mahenthiralingam, of Cardiff University's School of Biosciences, Cardiff University, has been studying Burkholderia for the last decade. Using forensic fingerprinting tests to genetically identify the bacteria, Dr Mahenthiralingam's research group has tracked strains all over the world and helped develop guidelines to prevent it spreading.

By the summer of 2007, Dr Mahenthiralingam had built up a large collection of Burkholderia bacteria. He and his team then decided to screen them for antibiotics active against other bacteria, particularly drugs with the potential to kill other bacteria that infect cystic fibrosis patients. Over the next two years, Dr Mahenthiralingam's team discovered that around one quarter of Burkholderia bacteria have very strong antibiotic activity on multidrug-resistant pathogens such as MRSA. One particular strain, Burkholderia ambifaria, was found to produce two very potent antibiotics active on resistant bacteria, in particular Acinetobacter baumanii.

The chemical structures of the antibiotics, called enacyloxins, were determined by Professor Gregory Challis and Dr. Lijiang Song at the University of Warwick, demonstrating that they belong to one of the most successful families of natural product drugs, the polyketides. Other examples of polyketides include erythromycin, which is used to cure many bacterial infections, and doxorubin, used as an anti-cancer drug. Professor Challis commented: "The combination of enzymes used by Burkholderia to make the enacyloxins is very unusual. Our insights into this process should allow us to use cutting edge synthetic biology techniques to produce novel enacyloxin analogues with improved pharmaceutical properties."

The team's findings have now been published in the journal Chemistry and Biology. Dr Mahenthiralingam commented: "Burkholderia are soil bacteria like Streptomyces, which are the source of most of our current antibiotics. Our research therefore offers real hope of a completely new source for the identification and engineering of highly potent antibiotics. With antibiotic resistant bacteria causing great suffering around the world, these new sources are urgently needed."

Dr. Eshwar Mahenthiralingam | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>