Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of Cyclops and Lilies

07.08.2009
New strategy for the synthesis of cylcopamine, a potential cancer treatment

In 1957, shepherds in Idaho (USA) discovered that when pregnant sheep ate lilies of the species Veratrum californicum (corn lily, California false hellebore), their lambs were born with only one eye in the center of their foreheads, like a cyclops.

The trigger for this was found to be the alkaloid cyclopamine. Cyclopamine has proven to be an effective candidate for cancer therapy in adult humans and is now undergoing clinical trials. A research team at the Universities of Leipzig (Germany) and Thessaloniki (Greece) has now developed a new synthetic pathway for the production of cyclopamine.

As they report in the journal Angewandte Chemie, the scientists, led by Athanassios Giannis, are confident that their research results will help to broaden our understanding of the structure–activity relationships of cyclopamine and to develop cyclopamine analogues with tuned bioactivities.

Cyclopamine is the first inhibitor of the hedgehog signal-transduction pathway, which is used by cells to react to external signals. The signaling pathway is named for its ligand “hedgehog”, a signal protein that carries out an important function in embryonic development. Malfunction of this signaling pathway leads to massive deformations in the course of embryonic development, such as cyclopia, and can cause cancer in adults. Inhibition of this pathway is a new possible cancer treatment.

Until now, there has been no efficient synthesis for cyclopamine. The structure of this unusual steroidal alkaloid contains many peculiarities that make synthesis difficult. The German and Greek team has now overcome these difficulties to develop an efficient twenty-step synthetic strategy starting from commercially available dehydroepiandrosterone, a natural steroid hormone. The strategy is based on biomimetic and diastereoselective transformations. The researchers achieved an overall yield of 1 %, which is a good result for such a tricky synthesis. In addition, small modifications in the reagents used allow this strategy to be used to produce cyclopamine analogues that do not occur in nature. The scientists aim to use these analogues to further examine the biological activity of this interesting natural product and then to adjust the activity to develop a new anti-tumor agent.

Author: Athanassios Giannis, Universität Leipzig (Germany),
http://www.uni-leipzig.de/~organik/giannis/
Title: Synthesis of Cyclopamine Using a Biomimetic and Diastereoselective Approach

Angewandte Chemie International Edition, doi: 10.1002/anie.200902520

Athanassios Giannis | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.uni-leipzig.de/~organik/giannis/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>