Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyber Chemistry Project to Speed Drug-Making

10.02.2009
National Science Foundation-funded project is aimed at solving dilemma of efficient drug-making from massive data available on the human genome.

Drug-makers could one day make products faster because of a $2.5 million National Science Foundation (NSF)-funded project now underway at the University of Maryland, Baltimore (UMB) and three other sites.

The cyber-infrastructure project goes to the heart of a current dilemma facing scientists trying to conduct efficient drug discovery and development from the massive data available on the human genome, says Alexander MacKerell, Grollman-Glick Professor of Pharmaceutical Sciences at the University of Maryland School of Pharmacy.

Scientists who look for new therapeutic drug opportunities from human gene and protein data have, in turn, created a “huge number of computational tools based on the mathematical models and parameters to biological molecules,” says MacKerell, who is director of the Computer-Aided Drug Design Center at the School of Pharmacy and principal investigator for the project. But, he says, such software tools are not one-size-fits-all. They are designed for different categories of molecules.

“Right now it is very tedious and time consuming to set up these mathematical models and parameters for the new molecules. Our cyber infrastructure will make this much faster. We are going to put the parameter engine in place to do the work for the scientist.”

Also funded for the cyber-infrastructure project are the Universities of Kentucky, Florida, and Illinois. Across the four universities, the project will also have applications in facilitating the design of electronics and the study of a wide range of material science and biological systems at the most basic level, in addition to drug design applications.

The project is aimed toward putting the parameter engine online. Researchers will go to the Internet, enter their drug molecule, and get the best model and the correct parameters for making their investigation more efficient. The proposed engine will provide an open architecture for obtaining and testing parameters under various conditions.

Ordinarily, once a drug company identifies a new drug candidate for the treatment of a particular medical problem, the next step is optimizing the drug candidate to improve its therapeutic potential. This is a huge task that involves testing hundreds of molecules, a task that can be facilitated using computational tools, says MacKerell. “We are trying to allow for computational tools to be rapidly applied to large numbers of molecules. We want to automate this process. To do so will allow computational scientists to work with biologists, thereby decreasing the time and cost required to develop new drug candidates.”

Also, the project will include annual workshops for education and outreach.

The basis for the Computer-Aided Drug Design Center is to ease the discovery of novel therapeutic agents that combines rational drug design methods with chemistry and structural biology. The computer-aided drug design approach allows researchers to use information available in 3-D structures of biological target molecules, which may be associated with human diseases, to identify chemicals that have a great potential for binding to those target molecules. Chemical compounds developed by such steps can often be developed into research tools and/or therapeutic agents. The NSF cyber-infrastructure project will help make this potential a reality.

Robert Latour, PhD, the McQueen-Quattlebaum Professor of Bioengineering at Clemson University, wrote a letter to the NSF supporting the project “because this is very important for a much broader spectrum of applications. It has enormous potential down the road to design things at the atomic level,” he said. Latour uses the same computational chemistry technology to simulate the interactions between biological molecules, such as proteins, and synthetic materials at the atomic level, aimed toward developing more accurate devices to detect biowarfare agents, more biocompatible implants for the human body, and other bionanotechnology applications.

Steve Berberich | Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>