Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyber Chemistry Project to Speed Drug-Making

10.02.2009
National Science Foundation-funded project is aimed at solving dilemma of efficient drug-making from massive data available on the human genome.

Drug-makers could one day make products faster because of a $2.5 million National Science Foundation (NSF)-funded project now underway at the University of Maryland, Baltimore (UMB) and three other sites.

The cyber-infrastructure project goes to the heart of a current dilemma facing scientists trying to conduct efficient drug discovery and development from the massive data available on the human genome, says Alexander MacKerell, Grollman-Glick Professor of Pharmaceutical Sciences at the University of Maryland School of Pharmacy.

Scientists who look for new therapeutic drug opportunities from human gene and protein data have, in turn, created a “huge number of computational tools based on the mathematical models and parameters to biological molecules,” says MacKerell, who is director of the Computer-Aided Drug Design Center at the School of Pharmacy and principal investigator for the project. But, he says, such software tools are not one-size-fits-all. They are designed for different categories of molecules.

“Right now it is very tedious and time consuming to set up these mathematical models and parameters for the new molecules. Our cyber infrastructure will make this much faster. We are going to put the parameter engine in place to do the work for the scientist.”

Also funded for the cyber-infrastructure project are the Universities of Kentucky, Florida, and Illinois. Across the four universities, the project will also have applications in facilitating the design of electronics and the study of a wide range of material science and biological systems at the most basic level, in addition to drug design applications.

The project is aimed toward putting the parameter engine online. Researchers will go to the Internet, enter their drug molecule, and get the best model and the correct parameters for making their investigation more efficient. The proposed engine will provide an open architecture for obtaining and testing parameters under various conditions.

Ordinarily, once a drug company identifies a new drug candidate for the treatment of a particular medical problem, the next step is optimizing the drug candidate to improve its therapeutic potential. This is a huge task that involves testing hundreds of molecules, a task that can be facilitated using computational tools, says MacKerell. “We are trying to allow for computational tools to be rapidly applied to large numbers of molecules. We want to automate this process. To do so will allow computational scientists to work with biologists, thereby decreasing the time and cost required to develop new drug candidates.”

Also, the project will include annual workshops for education and outreach.

The basis for the Computer-Aided Drug Design Center is to ease the discovery of novel therapeutic agents that combines rational drug design methods with chemistry and structural biology. The computer-aided drug design approach allows researchers to use information available in 3-D structures of biological target molecules, which may be associated with human diseases, to identify chemicals that have a great potential for binding to those target molecules. Chemical compounds developed by such steps can often be developed into research tools and/or therapeutic agents. The NSF cyber-infrastructure project will help make this potential a reality.

Robert Latour, PhD, the McQueen-Quattlebaum Professor of Bioengineering at Clemson University, wrote a letter to the NSF supporting the project “because this is very important for a much broader spectrum of applications. It has enormous potential down the road to design things at the atomic level,” he said. Latour uses the same computational chemistry technology to simulate the interactions between biological molecules, such as proteins, and synthetic materials at the atomic level, aimed toward developing more accurate devices to detect biowarfare agents, more biocompatible implants for the human body, and other bionanotechnology applications.

Steve Berberich | Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>