Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyber Chemistry Project to Speed Drug-Making

10.02.2009
National Science Foundation-funded project is aimed at solving dilemma of efficient drug-making from massive data available on the human genome.

Drug-makers could one day make products faster because of a $2.5 million National Science Foundation (NSF)-funded project now underway at the University of Maryland, Baltimore (UMB) and three other sites.

The cyber-infrastructure project goes to the heart of a current dilemma facing scientists trying to conduct efficient drug discovery and development from the massive data available on the human genome, says Alexander MacKerell, Grollman-Glick Professor of Pharmaceutical Sciences at the University of Maryland School of Pharmacy.

Scientists who look for new therapeutic drug opportunities from human gene and protein data have, in turn, created a “huge number of computational tools based on the mathematical models and parameters to biological molecules,” says MacKerell, who is director of the Computer-Aided Drug Design Center at the School of Pharmacy and principal investigator for the project. But, he says, such software tools are not one-size-fits-all. They are designed for different categories of molecules.

“Right now it is very tedious and time consuming to set up these mathematical models and parameters for the new molecules. Our cyber infrastructure will make this much faster. We are going to put the parameter engine in place to do the work for the scientist.”

Also funded for the cyber-infrastructure project are the Universities of Kentucky, Florida, and Illinois. Across the four universities, the project will also have applications in facilitating the design of electronics and the study of a wide range of material science and biological systems at the most basic level, in addition to drug design applications.

The project is aimed toward putting the parameter engine online. Researchers will go to the Internet, enter their drug molecule, and get the best model and the correct parameters for making their investigation more efficient. The proposed engine will provide an open architecture for obtaining and testing parameters under various conditions.

Ordinarily, once a drug company identifies a new drug candidate for the treatment of a particular medical problem, the next step is optimizing the drug candidate to improve its therapeutic potential. This is a huge task that involves testing hundreds of molecules, a task that can be facilitated using computational tools, says MacKerell. “We are trying to allow for computational tools to be rapidly applied to large numbers of molecules. We want to automate this process. To do so will allow computational scientists to work with biologists, thereby decreasing the time and cost required to develop new drug candidates.”

Also, the project will include annual workshops for education and outreach.

The basis for the Computer-Aided Drug Design Center is to ease the discovery of novel therapeutic agents that combines rational drug design methods with chemistry and structural biology. The computer-aided drug design approach allows researchers to use information available in 3-D structures of biological target molecules, which may be associated with human diseases, to identify chemicals that have a great potential for binding to those target molecules. Chemical compounds developed by such steps can often be developed into research tools and/or therapeutic agents. The NSF cyber-infrastructure project will help make this potential a reality.

Robert Latour, PhD, the McQueen-Quattlebaum Professor of Bioengineering at Clemson University, wrote a letter to the NSF supporting the project “because this is very important for a much broader spectrum of applications. It has enormous potential down the road to design things at the atomic level,” he said. Latour uses the same computational chemistry technology to simulate the interactions between biological molecules, such as proteins, and synthetic materials at the atomic level, aimed toward developing more accurate devices to detect biowarfare agents, more biocompatible implants for the human body, and other bionanotechnology applications.

Steve Berberich | Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>