Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyber Chemistry Project to Speed Drug-Making

10.02.2009
National Science Foundation-funded project is aimed at solving dilemma of efficient drug-making from massive data available on the human genome.

Drug-makers could one day make products faster because of a $2.5 million National Science Foundation (NSF)-funded project now underway at the University of Maryland, Baltimore (UMB) and three other sites.

The cyber-infrastructure project goes to the heart of a current dilemma facing scientists trying to conduct efficient drug discovery and development from the massive data available on the human genome, says Alexander MacKerell, Grollman-Glick Professor of Pharmaceutical Sciences at the University of Maryland School of Pharmacy.

Scientists who look for new therapeutic drug opportunities from human gene and protein data have, in turn, created a “huge number of computational tools based on the mathematical models and parameters to biological molecules,” says MacKerell, who is director of the Computer-Aided Drug Design Center at the School of Pharmacy and principal investigator for the project. But, he says, such software tools are not one-size-fits-all. They are designed for different categories of molecules.

“Right now it is very tedious and time consuming to set up these mathematical models and parameters for the new molecules. Our cyber infrastructure will make this much faster. We are going to put the parameter engine in place to do the work for the scientist.”

Also funded for the cyber-infrastructure project are the Universities of Kentucky, Florida, and Illinois. Across the four universities, the project will also have applications in facilitating the design of electronics and the study of a wide range of material science and biological systems at the most basic level, in addition to drug design applications.

The project is aimed toward putting the parameter engine online. Researchers will go to the Internet, enter their drug molecule, and get the best model and the correct parameters for making their investigation more efficient. The proposed engine will provide an open architecture for obtaining and testing parameters under various conditions.

Ordinarily, once a drug company identifies a new drug candidate for the treatment of a particular medical problem, the next step is optimizing the drug candidate to improve its therapeutic potential. This is a huge task that involves testing hundreds of molecules, a task that can be facilitated using computational tools, says MacKerell. “We are trying to allow for computational tools to be rapidly applied to large numbers of molecules. We want to automate this process. To do so will allow computational scientists to work with biologists, thereby decreasing the time and cost required to develop new drug candidates.”

Also, the project will include annual workshops for education and outreach.

The basis for the Computer-Aided Drug Design Center is to ease the discovery of novel therapeutic agents that combines rational drug design methods with chemistry and structural biology. The computer-aided drug design approach allows researchers to use information available in 3-D structures of biological target molecules, which may be associated with human diseases, to identify chemicals that have a great potential for binding to those target molecules. Chemical compounds developed by such steps can often be developed into research tools and/or therapeutic agents. The NSF cyber-infrastructure project will help make this potential a reality.

Robert Latour, PhD, the McQueen-Quattlebaum Professor of Bioengineering at Clemson University, wrote a letter to the NSF supporting the project “because this is very important for a much broader spectrum of applications. It has enormous potential down the road to design things at the atomic level,” he said. Latour uses the same computational chemistry technology to simulate the interactions between biological molecules, such as proteins, and synthetic materials at the atomic level, aimed toward developing more accurate devices to detect biowarfare agents, more biocompatible implants for the human body, and other bionanotechnology applications.

Steve Berberich | Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>