Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyanobacterium Found in Algae Collection Holds Promise for Biotech Applications

05.02.2015

Scientists have re-discovered a fast-growing bacterial strain first described in 1955

Cyanobacteria, bacteria that obtain their energy through photosynthesis, are of considerable interest as bio-factories, organisms that could be harnessed to generate a range of industrially useful products.


Washington University in St. Louis

Engineered cyanobacteria could serve as miniature bio-factories that could sequester carbon, produce biofuel. pr synthesize valuable chemicals of novel pharmaceuticals. Looking to overcome sluggish growth, scientists have recovered a fast-growing strain from a contaminated culture in the UTEX algae collection.

Part of their appeal is that they can grow on sunlight and carbon dioxide alone and thus could contribute to lowering greenhouse gas emissions and moving away from a petrochemical-based economy.

However, familiar cyanobacterial strains grow more slowly than the bacterial and yeast bio-factories already in use, and their genetic and metabolic networks are not as well understood.

So it was exciting news when a group of scientists led by Himadri B. Pakrasi, PhD, the Myron and Sonya Glassberg/Albert and Blanche Greensfelder Distinguished University Professor in Arts & Sciences at Washington University in St. Louis, reported in the Sept. 30 issue of Scientific Reports that they have identified a fast growing cyanobacterial strain, called Synechococcus elongatus UTEX 2973.

Rapid growth may allow this cyanobacterial strain to outcompete contaminating ones and eventually to synthesize larger quantities of biofuel or other valuable products.

It also has the more immediate benefit of making it easier to do the experimental work needed to understand the bacterium well enough that it can serve as a “chassis” that can be retooled for a variety of purposes. Because other cyanobacterial strains grow sluggishly, it takes weeks or months to perform experiments with them that can be performed in E. coli or yeast in days.

The newly identified strain might ultimately prove useful for carbon sequestration, biofuel production, biosynthesis of valuable chemicals and the search for novel pharmaceuticals.

“What intrigues me most about these microbes is their ingenuity,” Pakrasi said. “They have somehow figured out how to multiply rapidly by using sunlight and carbon dioxide very efficiently.” Pakrasi, who also serves as director of Washington University’s International Center for Advanced Renewable Energy and Sustainability (I-CARES), and has been a prominent advocate of cyanobacterial synthetic biology for a decade.

Hiding in plain sight
Like the famous purloined letter, the cyanobacterial strain was hiding in plain sight — or to be precise, in a collection of algae cultures at the University of Texas in Austin. (Cyanobacteria are sometimes called blue-green algae, but this a misnomer.)

Although most cyanobacteria grow slowly, in 1955 two scientists at the University of Texas at Austin described a fast-growing cyanobacterial strain collected from a campus creek.

Whereas most strains grew by 5 to 8 percent per hour, this strain grew by 30 percent per hour. What’s more, it grew fastest at the relatively high temperature of 38 degrees C (104 degrees F). This strain was eventually deposited in the UTEX algae culture collection as Synechococcus leopoliensis UTEX 625.

However, at some point the UTEX 625 strain was contaminated and lost its rapid growth property. The Pakrasi lab obtained a frozen sample of the UTEX strain, and by careful coaxing under appropriate conditions, recovered a pure, fast-growing strain from the mixed culture of the deposited algae.

Under favorable conditions, the newly isolated strain grows at more than 50 percent per hour, the highest growth rate reported to date for any cyanobacterial strain, and almost twice as fast as a widely studied close relative. Since the new strain may not be the one that was described in 1955, the scientists deposited it in the UTEX algae collection as Synechococcus elongatus UTEX 2973.

Kicking the tires on the new model
To characterize the new strain, Washington University sequenced its genome. To the scientists’ surprise, the new strain turned out to be remarkably similar to a widely studied cyanobacterium, Synechococcus elongatus PCC 7942, originally discovered far away from Texas (in lakes in California), that grows only half as fast.

Since the genome sequences of the two strains are 99.8 percent identical, the genetic determinants of rapid growth almost certainly lie in the remaining 0.2 percent.

The proteomes (the set of proteins produced by an organism) of both of these strains were analyzed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility located at Pacific Northwest National Laboratory in Richland, Wash. This data, which covers 68 percent of the proteins the microbes produce, will guide further work with both strains.

The scientists also showed that the genome of the new strain can be easily manipulated, a characteristic essential to its use as a host for projects in synthetic biology.

“Cyanobacteria have the potential to be the ideal biofactories for sustainable carbon negative production of numerous compounds,” Pakrasi said. “This fast-growing strain should help to realize that dream.”

Contact Information
Diana Lutz
Senior Science Editor
dlutz@wustl.edu
Phone: 314-935-5272

Diana Lutz | newswise
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>