Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting the Ties That Bind

24.10.2014

Stowers team identifies “molecular scissors” required for successful chromosome separation in sex cells

The development of a new organism from the joining of two single cells is a carefully orchestrated endeavor. But even before sperm meets egg, an equally elaborate set of choreographed steps must occur to ensure successful sexual reproduction. Those steps, known as reproductive cell division or meiosis, split the original number of chromosomes in half so that offspring will inherit half their genetic material from one parent and half from the other.


Stacie Hughes, Ph.D., Hawley Lab, Stowers Institute for Medical Research

An oocyte with decreased Topoiosmerase II in the heterochromatic region of the X chromosome (green) failed to separate while heterochromatic region of the 4th chromosome (red) is stretched into abnormal projections.

During meiosis, each set of homologous chromosomes pair up in a kind of chromosomal square dance, chromosome 1 with chromosome 1, 2 with 2, and so on down the line. The partners stick together, dancing through the phases of meiosis, until it is time to segregate or separate to opposite ends of the dividing cell. When the dancers don’t pair or part appropriately it can result in eggs and sperm with the wrong number of chromosomes, a major cause of miscarriage and birth defects.

To avoid these mistakes, most chromosomes use a process known as crossing over, looping their arms with their partners and even swapping pieces of genetic material to stick together until the dance is over. A few chromosomes, like chromosome 4 in the fruit fly Drosophila melanogaster, are too short to make these crossovers. Yet somehow, they have figured out another way to stay connected to their partners.

Previously, Stacie E. Hughes, Ph.D., a research specialist II at the Stowers Institute for Medical Research, identified thin threads of DNA that seemed to tie these other homologous chromosomes together. Yet a major question remained: once these chromosomes are roped into pairs, how do they manage to come apart again?

Now, Hughes and R. Scott Hawley, Ph.D., have shown that an enzyme called Topoisomerase II is required for resolving these threads so homologous chromosomes can part ways. The finding, published in the October 23, 2014 issue of PLoS Genetics, underscores the complexity of the meiotic process.

“It is not surprising there are many ways to segregate chromosomes because there are also many ways to control other molecular events, like gene expression,” says Hawley, a Stowers Institute investigator and American Cancer Society research professor. “This method of segregating shorter chromosomes may be clunky, odd, crazy, and as noncanonical as it gets, but that doesn’t matter, because the cells survive. In the end, these processes don’t have to be elegant, they just have to work.”

Ever since Hughes’ initial discovery of DNA threads, she and Hawley have been looking for the molecular scissors responsible for cutting entangled chromosomes free. The most prominent candidate to emerge from their search was Topoisomerase II, an enzyme known to cut and untwist tangled strands of the double helix.

Previous research had shown that Topisomerase II was involved in earlier cellular processes like DNA replication, and the enzyme was still detectable even during later phases of meiosis. The researchers thought that Topoisomerase II might be waiting around to do yet another job, cutting DNA threads to allow homologous chromosomes to segregate.

Testing their hypothesis seemed relatively straightforward. The researchers simply needed to “knock out” Topoisomerase II in their model organism of choice - the female fruit fly - and then look to see whether meiosis was able to proceed normally without it. However, because the enzyme was involved in so many critical cellular processes, the researchers knew that such an approach would yield nothing more than dead fruit flies.

Instead, they adapted a sophisticated method known as RNA interference - which uses small pieces of DNA’s chemical cousin RNA to silence genes - and eliminated Topoisomerase II at a specific time point late in meiosis. Hughes then isolated the oocytes from the fruit flies and analyzed them using fluorescent tags that illuminate the DNA threads connecting the chromosomes. Their findings were dramatic.

“Without this enzyme the chromosomes can’t come apart, they are stuck together like glue,” says Hughes. “There are large regions of the chromosomes that are tethered together by these threads, while the rest is stretched out like a slinky as the chromosomes are pulled in opposite directions. It is just a mess. Because the chromosomes are just stuck there, they can’t finish meiosis.”

As a result, the mutant flies are essentially sterile. A separate study published in the same journal shows that male mutants experience a similar fate, their spermatocytes permanently locked in an immature state. Without Topoisomerase II, the oocytes and spermatocytes are locked in meiosis, unable to complete the next steps - fertilization, cell division and differentiation - needed to create a new organism.

The work was funded in part by the Stowers Institute for Medical Research and the American Cancer Society (award number RP-05-086-06-DDC).

Lay Summary of Findings

During the formation of eggs and sperm, the cell’s chromosomes must pair up and part in an elaborate sequence that results in sex cells with exactly half the number of chromosomes as the parent cell. A single misstep can cause infertility, miscarriage, and birth defects. Recent research has shown that some chromosomes avoid these mistakes by using thin threads of DNA to tether themselves together, but how they come untied again has not been clear. In the current issue of the scientific journal PLoS Genetics, Stowers Institute scientists report that an enzyme called Topoisomerase II is required for these entangled chromosomes to be set free. Stowers Research Associate II Stacie E. Hughes, Ph.D., who led the study, explains that without the enzyme, female fruit flies were unable to complete meiosis and were rendered completely sterile. Topoisomerase II likely resolves the DNA entanglements by cutting and untwisting tangled DNA, as in other processes like DNA replication.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Since then, the Institute has spent over 900 million dollars in pursuit of its mission.

Currently, the Institute is home to almost 550 researchers and support personnel; over 20 independent research programs; and more than a dozen technology-development and core facilities.

Contact Information

Kim Bland
Head, Science Communications
ksb@stowers.org
816-926-4015

Kim Bland | newswise

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>