Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting-edge technology - research on new drugs at gigahertz magnetic field

25.08.2017

The University of Bayreuth supports research in the forefront of structural biology applied to molecular medicine, a field that was very successful in recent years. Scientists at this university focus, among others, on the development of antiviral drugs, novel antibiotics and strategies against allergies. These projects rely heavily on the world’s most powerful, high-resolution 1-GHz nuclear magnetic resonance (NMR) spectrometer, the second spectrometer of this field strength worldwide, after one that is located in Lyon/France. In contrast to the installation in Lyon, the Bayreuth spectrometer is a new generation instrument.

“The potential for basic and applied research in the field of molecular medicine based on structural biology techniques at the University of Bayreuth is tremendous, in particular considering the size of this university”, to quote Prof. Dr. Paul Rösch, Chair of Biopolymers and Director of the Research Center for Bio-Macromolecules (BIOmac) at the University Bayreuth.


Rösch (second from the right) and members of his team insert a protein sample into the magnet of the 1 GHz spectrometer in order to study the protein's conformation.

Photo: Jürgen Rennecke/press office University of Bayreuth

Rösch proudly points out the most recent results in several key areas:

Although antiviral therapies against HIV, the virus that causes AIDS, exist, the disease is not curable, and virus varieties emerge that are resistant to current drugs. “With the aid of NMR-spectroscopy at 1-GHz we are probing viral proteins such as reverse transciptase that are essential to the viral life cycle to create a structural basis for the development of innovative inhibitors of the enzyme”, Rösch states.

The spectrometer is also used to investigate the huge protein RNA-polymerase (RNAP) that is responsible for the replication of bacteria and proteins that regulate RNAP activity. “The results from these studies are the structural basis for a targeted design of new therapeutics”, Rösch says. “We strive to be on the forefront in the fight against microbes resistant to current antibiotics.”

Allergy research is another focus of structural biology based on NMR-spectroscopy in Bayreuth. The conformation and dynamics of protein allergens and their complexes with small molecules can be determined very precisely with the 1-GHz spectrometer. From these results modifications that transform allergenic proteins into non-allergenic varieties can be suggested, which, in turn, may eventually be used in immune therapy or other approaches.

The NMR data obtained at 1 GHz also enables detailed views of various complexes of allergenic proteins, thus paving the way to understand their so far largely unknown physiological functions. This may finally lead to the substitution of allergenic proteins by non-allergenic ones in plants and foods.

“This spectrometer and the expertise of our researchers made us one of the leading facilities in the field of structural biology and molecular medicine worldwide. In addition to an internationally recognized center of NMR-spectroscopy for structural biology, we are home to distinguished scientists in protein X-ray crystallography, rendering the University of Bayreuth internationally competitive in these research areas”, as Prof. Dr. Stefan Leible, president of the University of Bayreuth, explains. He adds: “This new spectrometer along with the unique expertise in structural biology present at the University of Bayreuth create a fantastic outlook for basic as well as applied research.”

Dr. Ludwig Spaenle, Bavarian State Minister of Education and Culture, Science and the Arts, confirms: “The 1-GHz NMR-spectrometer is an investment of outstanding scientific quality and national importance. The University of Bayreuth once again shows that – at least in Bavaria – even small universities are capable of achieving scientific excellence and claim a prominent place in the challenging competition of scientific institutions.”

Stefan Müller, Parliamentary State Secretay at the Federal Ministry of Education and Research, stresses: “The joint investment in this new NMR instrument by the Federal Republic and the State of Bavaria definitely furthers structural biology in Germany and beyond. This technology is among the most important of our times, it has the potential for huge contributions towards the solution of major social challenges such as new possibilities to eliminate causes of diseases.”

Virtually all research groups in academia in the field of NMR-based structural biology supported the establishment of an internationally competitive NMR-infrastructure in Bayreuth. In addition to the University of Bayreuth, the universities of Erlangen-Nuremberg, Regensburg and Wuerzburg were the main applicants. The 12 million Euro instrumentation has been financed by the German Federal Government and the State of Bavaria.

The 1-GHz spectrometer is also part of an EU-initiative to set up a network of biophysical research institutions that makes biophysical instrumentation accessible EU-wide. Thus, not only local and regional researchers are welcome to use the instrument but colleagues from Europe and around the globe are invited to make use of its capabilities.

The BIOmac laboratory is, apart from the Institut des Sciences Analytiques (ISA) in Lyon/France, the second institution in the field of molecular medicine, structural biology and chemical research worldwide that got equipped with an NMR-spectrometer with the currently strongest magnet available for such an application: a high-resolution magnet with a field strength of 23,4 Tesla, equivalent to a proton resonance frequency of 1 GHz.

contact:
Prof. Dr. Paul Rösch
Head of Department of Biopolymers
Director of the Research Center for Bio-Macromolecules (BIOmac)
Faculty of Biology, Chemistry and Earth Sciences
University of Bayreuth
Universitätsstraße 30 / BGI
95447 Bayreuth
Germany
phone: +49 (0) 921 / 55-3540
email: roesch@unibt.de
http://www.biomac.uni-bayreuth.de

Brigitte Kohlberg | Universität Bayreuth

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>