Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curious Monkeys Share Our Thirst for Knowledge

16.02.2015

Monkeys are notoriously curious, and new research has quantified just how eager they are to gain new information, even if there are not immediate benefits. The findings offer insights into how a certain part of the brain shared by monkeys and humans plays a role in decision making, and perhaps even in some disorders and addictions in humans.

The study, by researchers at the University of Rochester and Columbia University, shows that rhesus macaques have such robust curiosity that they are willing to give up a surprisingly large portion of a potential prize in order to quickly find out if they selected the winning option at a game of chance.


Benjamin Hayden

MRI of brain with orbitofrontal cortex highlighted

https://www.youtube.com/watch?v=kKoNMYE9Bgs

“It’s like buying a lottery ticket that you can scratch off and find out if you win immediately, or you can buy one that has a drawing after the evening news,” explained Benjamin Hayden, co-senior author of the study and professor in brain and cognitive sciences at the University of Rochester. “Regardless, you won’t get the money any more quickly, or in the case of the monkeys, they won’t get the squirt of water any sooner. They will just find out if they selected the winning option.”

In the study published in Neuron, monkeys were presented with a video gambling task in which they consistently chose to learn in advance if they picked the winning option. The monkeys did not receive their prize any sooner, which was a measure of juice or water; they were simply informed immediately if they selected a winner.

“When it’s simply a choice between getting the information earlier or not, the monkeys show a pretty strong preference for getting it earlier. But what we really wanted to do is quantify this preference,” said first author and lead researcher Tommy Blanchard, a Ph.D. candidate in Hayden's lab.

In the video gambling experiments, graduated colored columns illustrated the amount of water that could be won. The monkeys were more curious about the gambles when the stakes—or columns—were higher.

The researchers found the monkeys not only consistently selected the gamble that informed them if they picked a winner right away, but they were also willing to select that option when the winnings were up to 25 percent less than the gamble that required them to wait for the results. “One way to think about this is that this is the amount of water the monkeys were willing to pay for the information about if they made the correct choice,” explained Blanchard.

“That 25 percent was really surprising to us—that’s pretty big,” Hayden said. “These monkeys really, really want that information, and they do these gambling tasks repeatedly and never get bored of them—it's intrinsically motivated.”

Rewarding Curiosity

According to the researchers, their study helps to build a broader understanding for how curiosity—information seeking—is processed and rewarded in the brain.

Like monkeys, when curious we evaluate what we’d be willing to pay—or give up—to satisfy our curiosity, Hayden said. And in the case of gambling, there is also the potential of a prize to factor in. So when we make a choice, it depends on the sum of those two things: the gamble (the money you might win), and the value of finding out. And those two things need to be combined in order to make decisions about that gamble.

Earlier work suggests that these components are combined in the brain’s dopamine system. This study looks at that one step earlier in the process, in a region of the brain called the Orbitofrontal cortex, or OFC.

“I think of the OFC as the workshop of economic value, where, in this case, you have the value of the gamble and the value of the information—the raw materials—but they haven’t yet been combined,” said Hayden. “This study seems to have revealed that the mixing of the raw materials happens somewhere between the OFC and the dopamine system. We now have two points in the circuit.”

“One of the reasons this research is important,” Hayden said, “is because this basic desire for information turns out to be something that’s really corrupted in people with anxiety, depression, obsessive-compulsive disorder, and addiction, for example.”

“We think that by understanding these basic circuits in monkeys we may gain insights that 10 to15 years down the road may lead to new treatments for these psychiatric diseases,” Hayden concluded.

Ethan S. Bromberg-Martin of Columbia University was co-senior author of the study.

The National Institutes of Health supported the research.

Contact Information
Monique Patenaude
Press Officer
monique.patenaude@rochester.edu
Phone: 585-276-3693

Monique Patenaude | EurekAlert!

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>