Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curious Monkeys Share Our Thirst for Knowledge

16.02.2015

Monkeys are notoriously curious, and new research has quantified just how eager they are to gain new information, even if there are not immediate benefits. The findings offer insights into how a certain part of the brain shared by monkeys and humans plays a role in decision making, and perhaps even in some disorders and addictions in humans.

The study, by researchers at the University of Rochester and Columbia University, shows that rhesus macaques have such robust curiosity that they are willing to give up a surprisingly large portion of a potential prize in order to quickly find out if they selected the winning option at a game of chance.


Benjamin Hayden

MRI of brain with orbitofrontal cortex highlighted

https://www.youtube.com/watch?v=kKoNMYE9Bgs

“It’s like buying a lottery ticket that you can scratch off and find out if you win immediately, or you can buy one that has a drawing after the evening news,” explained Benjamin Hayden, co-senior author of the study and professor in brain and cognitive sciences at the University of Rochester. “Regardless, you won’t get the money any more quickly, or in the case of the monkeys, they won’t get the squirt of water any sooner. They will just find out if they selected the winning option.”

In the study published in Neuron, monkeys were presented with a video gambling task in which they consistently chose to learn in advance if they picked the winning option. The monkeys did not receive their prize any sooner, which was a measure of juice or water; they were simply informed immediately if they selected a winner.

“When it’s simply a choice between getting the information earlier or not, the monkeys show a pretty strong preference for getting it earlier. But what we really wanted to do is quantify this preference,” said first author and lead researcher Tommy Blanchard, a Ph.D. candidate in Hayden's lab.

In the video gambling experiments, graduated colored columns illustrated the amount of water that could be won. The monkeys were more curious about the gambles when the stakes—or columns—were higher.

The researchers found the monkeys not only consistently selected the gamble that informed them if they picked a winner right away, but they were also willing to select that option when the winnings were up to 25 percent less than the gamble that required them to wait for the results. “One way to think about this is that this is the amount of water the monkeys were willing to pay for the information about if they made the correct choice,” explained Blanchard.

“That 25 percent was really surprising to us—that’s pretty big,” Hayden said. “These monkeys really, really want that information, and they do these gambling tasks repeatedly and never get bored of them—it's intrinsically motivated.”

Rewarding Curiosity

According to the researchers, their study helps to build a broader understanding for how curiosity—information seeking—is processed and rewarded in the brain.

Like monkeys, when curious we evaluate what we’d be willing to pay—or give up—to satisfy our curiosity, Hayden said. And in the case of gambling, there is also the potential of a prize to factor in. So when we make a choice, it depends on the sum of those two things: the gamble (the money you might win), and the value of finding out. And those two things need to be combined in order to make decisions about that gamble.

Earlier work suggests that these components are combined in the brain’s dopamine system. This study looks at that one step earlier in the process, in a region of the brain called the Orbitofrontal cortex, or OFC.

“I think of the OFC as the workshop of economic value, where, in this case, you have the value of the gamble and the value of the information—the raw materials—but they haven’t yet been combined,” said Hayden. “This study seems to have revealed that the mixing of the raw materials happens somewhere between the OFC and the dopamine system. We now have two points in the circuit.”

“One of the reasons this research is important,” Hayden said, “is because this basic desire for information turns out to be something that’s really corrupted in people with anxiety, depression, obsessive-compulsive disorder, and addiction, for example.”

“We think that by understanding these basic circuits in monkeys we may gain insights that 10 to15 years down the road may lead to new treatments for these psychiatric diseases,” Hayden concluded.

Ethan S. Bromberg-Martin of Columbia University was co-senior author of the study.

The National Institutes of Health supported the research.

Contact Information
Monique Patenaude
Press Officer
monique.patenaude@rochester.edu
Phone: 585-276-3693

Monique Patenaude | EurekAlert!

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>