Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The curious chromosomes of a curious fruit

10.03.2009
The genetic linkage map of the kiwifruit

Incipient sex chromosomes have been found in New Zealand's eponymous export, the kiwifruit. Researchers writing in the open access journal BMC Genomics have mapped the kiwifruit genome and pin-pointed the sex-determining locus.

It has previously been suggested that, among the kiwifruit plant's small (
The mapping of this sex-determining locus to a subtelomeric region fits with previous published work on chromosome pairing and also the authors own observations. Whilst studying kiwifruit karyotypes, the research team observed that in the pollen mother cells undergoing meiosis one of the 29 pairs of chromosomes did not pair tightly in a region close to one end. An absence of pairing means that the male-specific region on the Y is inherited as a unit, maintaining sexual dimorphism. Based on the genetic structure they have now defined for this non-recombining sex-determining region, the authors suggest that at least two linked genes on the putative Y chromosome are responsible for dioecy: one suppressing pistil formation and one for pollen development.

Of more than 60 species of Actinidia (kiwifruit), only two have been widely cultivated so far, and there is potential for breeding new varieties. All Actinida species are dioecious, and the authors say they are likely to have similar sex-determining regions. The authors work in producing female, male and consensus genetic linkage maps for the golden kiwifruit, A. chinensis and identifying the sex-determining region may provide the key to fully exploiting this relatively recent cultivar.

According to Fraser, 'The gene-rich map we have constructed will be a valuable resource for quantitative trait loci analyses to identify markers related to traits of importance in breeding new and novel kiwifruit for the markets of the world.'

Charlotte Webber | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>