Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Culture in humans and apes has the same evolutionary roots

21.10.2011
Culture is not a trait that is unique to humans.

By studying orangutan populations, a team of researchers headed by anthropologist Michael Krützen from the University of Zurich has demonstrated that great apes also have the ability to learn socially and pass them down through a great many generations. The researchers provide the first evidence that culture in humans and great apes has the same evolutionary roots, thus answering the contentious question as to whether variation in behavioral patterns in orangutans are culturally driven, or caused by genetic factors and environmental influences.


Orang-Utan
Mure Wipfli, Anthropologisches Institut und Museum, Universität Zürich

In humans, behavioral innovations are usually passed down culturally from one generation to the next through social learning. For many, the existence of culture in humans is the key adaptation that sets us apart from animals. Whether culture is unique to humans or has deeper evolutionary roots, however, remains one of the unsolved questions in science.

About ten years ago, biologists who had been observing great apes in the wild reported a geographic variation of behavior patterns that could only have come about through the cultural transmission of innovations, much like in humans. The observation triggered an intense debate among scientists that is still ongoing. To this day, it is still disputed whether the geographical variation in behavior is culturally driven or the result of genetic factors and environmental influences.

Humans are not the only ones to exhibit culture
Anthropologists from the University of Zurich have now studied whether the geographic variation of behavioral patterns in nine orangutan populations in Sumatra and Borneo can be explained by cultural transmission. “This is the case; the cultural interpretation of the behavioral diversity also holds for orangutans – and in exactly the same way as we would expect for human culture,” explains Michael Krützen, the first author of the study just published in Current Biology. The researchers show that genetic factors or environmental influences cannot explain the behavior patterns in orangutan populations. The ability to learn things socially and pass them on evolved over many generations; not just in humans but also apes. “It looks as if the ability to act culturally is dictated by the long life expectancy of apes and the necessity to be able to adapt to changing environmental conditions,” Krützen adds, concluding that, “Now we know that the roots of human culture go much deeper than previously thought. Human culture is built on a solid foundation that is many millions of years old and is shared with the other great apes.”
Largest dataset for any great ape species
In their study, the researchers used the largest dataset ever compiled for a great ape species. They analyzed over 100,000 hours of behavioral data, created genetic profiles for over 150 wild orangutans and measured ecological differences between the populations using satellite imagery and advanced remote sensing techniques. “The novelty of our study,” says co-author Carel van Schaik, “is that, thanks to the unprecedented size of our dataset, we were the first to gauge the influence genetics and environmental factors have on the different behavioral patterns among the orangutan populations.” When the authors examined the parameters responsible for differences in social structure and behavioral ecology between orangutan populations, environmental influences and, to a lesser degree, genetic factors played an important role, proving that the parameters measured were the right ones. This, in turn, was pivotal in the main question as to whether genetic factors or environmental influences can explain the behavioral patterns in orangutan populations. “That wasn’t the case. As a result, we could prove that a cultural interpretation for behavioral diversity also holds true for orangutans,” van Schaik concludes.
Literature:
Michael Krützen, Erik P. Willems, and Carel P. van Schaik: Culture and Geographic Variation in Orangutan Behaviour, in: Current Biology, Volume 21, Issue 21, first published online: October 20, 2011, doi:10.1016/j.cub.2011.09.01
Contacts:
Dr. Michael Krützen
Anthropological Institute & Museum
University of Zurich
Tel.: +41 635 54 12
Email: michael.kruetzen@aim.uzh.ch
Beat Müller
Media Relations
University of Zurich
Phone: +41 44 634 44 32
E-mail: beat.mueller@kommunikation.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>