Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cucumber genome published

03.11.2009
Guide to pumpkin, melon and plant vascular system

The genome of the cucumber has been sequenced by an international consortium lead by Chinese and U.S. institutions. The annotated genome is published online Nov. 1 by the journal Nature Genetics.

The cucumber genome will give insight into the genetics of the whole cucurbit family, which includes pumpkins and squash, melon and watermelon, and be a platform for research in plant biology, said William Lucas, professor and chair of the Department of Plant Biology at the University of California, Davis. Lucas helped with the development and management of the project.

"This is going to help a large community -- we can now go ten times faster than we could before," Lucas said.

Lucas studies the vascular transport systems, phloem and xylem, that plants use to move nutrients, minerals and signaling molecules throughout the body of the plant. Pumpkins and cucumber are model plants for studying vascular transport, because their vascular system is large and easy to access.

The Lucas research group has shown that plants use both proteins and RNA -- molecules copied or transcribed from DNA -- as signaling molecules that are transported around the plant through the phloem. These signals can affect plant growth, coordinate activity through the plant and help it fight infection. For example, in 2007 they showed that "florigen," the signal that tells the growing tips of plants to make flowers in response to seasonal changes, is a protein transmitted through the phloem.

The new study identified 800 phloem proteins in the cucumber genome. With the help of the genome data, researchers will be able to rapidly identify and characterize all the protein, RNA and other molecules in the phloem sap, Lucas said.

There are already indications that far more is going on in the phloem than anybody, "including me," had previously expected, he said.

The study shows that five of the seven chromosomes in cucumber arose from ten ancestral chromosomes shared with melon, and gene-coding stretches of DNA share about 95 percent similarity to melon. Preliminary studies in the Lucas lab at UC Davis have established comparable similarity between cucumber and pumpkin.

The cucumber genome will also provide insights into traits such as disease and pest-resistance, the "fresh green" odor of the fruit, bitter flavors and sex expression.

The cucumber is the seventh plant to have its genome sequence published, following the well-studied model plant Arabidopsis thaliana, the poplar tree, grapevine, papaya, and the crops rice and sorghum.

The sequencing effort, begun earlier this year, was coordinated by Professor Sanwen Huang of the Chinese Academy of Agricultural Science and included the Genome Center at the Beijing Genome Institute-Shenzhen and UC Davis as well as several laboratories in China and others in the U.S., Denmark, the Netherlands, Australia and South Korea.

Part of the effort relied on new methods developed by the Beijing Genome Institute to assemble short pieces of DNA, about 50 base pairs, into the sequence. The Beijing Genome Institute-Shenzhen can now sequence and assemble genomes much faster, and at lower cost, than previously possible, Lucas said.

"This will be the forerunner for many genomes done at a cost-effective rate," he said.

About UC Davis

For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges -- Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science -- and advanced degrees from six professional schools -- Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

William Lucas | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>