Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cucumber genome published

Guide to pumpkin, melon and plant vascular system

The genome of the cucumber has been sequenced by an international consortium lead by Chinese and U.S. institutions. The annotated genome is published online Nov. 1 by the journal Nature Genetics.

The cucumber genome will give insight into the genetics of the whole cucurbit family, which includes pumpkins and squash, melon and watermelon, and be a platform for research in plant biology, said William Lucas, professor and chair of the Department of Plant Biology at the University of California, Davis. Lucas helped with the development and management of the project.

"This is going to help a large community -- we can now go ten times faster than we could before," Lucas said.

Lucas studies the vascular transport systems, phloem and xylem, that plants use to move nutrients, minerals and signaling molecules throughout the body of the plant. Pumpkins and cucumber are model plants for studying vascular transport, because their vascular system is large and easy to access.

The Lucas research group has shown that plants use both proteins and RNA -- molecules copied or transcribed from DNA -- as signaling molecules that are transported around the plant through the phloem. These signals can affect plant growth, coordinate activity through the plant and help it fight infection. For example, in 2007 they showed that "florigen," the signal that tells the growing tips of plants to make flowers in response to seasonal changes, is a protein transmitted through the phloem.

The new study identified 800 phloem proteins in the cucumber genome. With the help of the genome data, researchers will be able to rapidly identify and characterize all the protein, RNA and other molecules in the phloem sap, Lucas said.

There are already indications that far more is going on in the phloem than anybody, "including me," had previously expected, he said.

The study shows that five of the seven chromosomes in cucumber arose from ten ancestral chromosomes shared with melon, and gene-coding stretches of DNA share about 95 percent similarity to melon. Preliminary studies in the Lucas lab at UC Davis have established comparable similarity between cucumber and pumpkin.

The cucumber genome will also provide insights into traits such as disease and pest-resistance, the "fresh green" odor of the fruit, bitter flavors and sex expression.

The cucumber is the seventh plant to have its genome sequence published, following the well-studied model plant Arabidopsis thaliana, the poplar tree, grapevine, papaya, and the crops rice and sorghum.

The sequencing effort, begun earlier this year, was coordinated by Professor Sanwen Huang of the Chinese Academy of Agricultural Science and included the Genome Center at the Beijing Genome Institute-Shenzhen and UC Davis as well as several laboratories in China and others in the U.S., Denmark, the Netherlands, Australia and South Korea.

Part of the effort relied on new methods developed by the Beijing Genome Institute to assemble short pieces of DNA, about 50 base pairs, into the sequence. The Beijing Genome Institute-Shenzhen can now sequence and assemble genomes much faster, and at lower cost, than previously possible, Lucas said.

"This will be the forerunner for many genomes done at a cost-effective rate," he said.

About UC Davis

For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges -- Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science -- and advanced degrees from six professional schools -- Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

William Lucas | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>