Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New CU-Boulder study reveals bacteria from dog feces in outdoor air of urbanized air

19.08.2011
Bacteria from fecal material -- in particular, dog fecal material -- may constitute the dominant source of airborne bacteria in Cleveland's and Detroit's wintertime air, says a new University of Colorado Boulder study.

The CU-Boulder study showed that of the four Midwestern cities in the experiment, two cities had significant quantities of fecal bacteria in the atmosphere -- with dog feces being the most likely source.

"We found unexpectedly high bacterial diversity in all of our samples, but to our surprise the airborne bacterial communities of Detroit and Cleveland most closely resembled those communities found in dog poop," said lead author Robert Bowers, a graduate student in CU-Boulder's ecology and evolutionary biology department and the CU-headquartered Cooperative Institute for Research in Environmental Sciences, or CIRES. "This suggests that dog poop may be a potential source of bacteria to the atmosphere at these locations."

The study was published July 29 in Applied and Environmental Microbiology. Co-authors on the study included Noah Fierer, an assistant professor in CU-Boulder's ecology and evolutionary biology department and a CIRES fellow; Rob Knight, an associate professor in CU-Boulder's chemistry and biochemistry department; Amy Sullivan and Jeff Collett Jr. of Colorado State University; and Elizabeth Costello of the Stanford University School of Medicine.

Scientists already knew that bacteria exist in the atmosphere and that these bacteria can have detrimental effects on human health, triggering allergic asthma and seasonal allergies, Fierer said. But it is only in recent years that researchers have realized that there is an incredible diversity of bacteriaresiding in the air, he said.

"There is a real knowledge gap," said Fierer. "We are just starting to realize this uncharted microbial diversity in the air -- a place where you wouldn't exactly expect microbes to be living."

To gain further understanding of just what microbes are circulating in urban environments, the team analyzed the local atmosphere in the summer and winter at four locations in the Great Lakes region of the U.S. Three of the locations -- Chicago, Cleveland and Detroit -- are major cities with populations of greater than 2 million, and one location, Mayville, Wis., is a small town with a population of less than 6,000.

The team used nearly 100 air samples collected as part of a previous study conducted by Colorado State University. The CSU experiment investigated the impact of biomass burning and involved studying the impacts of residential wood burning and prescribed fires on airborne fine particle concentrations in the midwestern United States.

"What we've been looking at are the numbers and the types of bacteria in the atmosphere," Fierer said. "We breathe in bacteria every minute we are outside, and some of these bugs may have potential health implications."

The researchers analyzed the bacteria's DNA in the collected air samples and compared the bacteria they found against a database of bacteria from known sources such as leaf surfaces, soil, and human, cow and dog feces. They discovered that the bacterial communities in the air were surprisingly diverse and also that, in two of the four locations, dog feces were a greater than expected source of bacteria in the atmosphere in the winter.

In the summer, airborne bacteria come from many sources including soil, dust, leafsurfaces, lakes and oceans, Bowers said. But in the winter, as leaves drop and snow covers the ground, the influence that these environments have as sources also goes down. It is during this season that the airborne communities appeared to be more influenced by dog feces than the other sources tested in the experiment, he said.

"As best as we can tell, dog feces are the only explanation for these results," Fierer said. "But we do need to do more research."

The team plans to investigate the bacterial communities in other cities and to build a continental-scale atlas of airborne bacterial communities, Fierer said. "We don't know if the patterns we observed in those sites are unique to those cities," he said. "Does San Francisco have the same bacteria as New York? Nobody knows as yet."

Fierer believes it is important to pin down the types of bacteria in the air, how these bacteria vary by location and season, and where they are coming from.With this information, scientists can then investigate the possible impacts on human health, he said.

"We need much better information on what sources of bacteria we are breathing in every time we go outside," Fierer said.

The study was funded by the CIRES Innovative Research Program, the U.S. Environmental Protection Agency, the National Science Foundation, the Howard Hughes Medical Institute and the National Institutes of Health. The aerosol sample collection for this project was supported by the Lake Michigan Air Directors Consortium.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration.

Noah Fierer | EurekAlert!
Further information:
http://www.colorado.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>