Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New CU-Boulder study reveals bacteria from dog feces in outdoor air of urbanized air

19.08.2011
Bacteria from fecal material -- in particular, dog fecal material -- may constitute the dominant source of airborne bacteria in Cleveland's and Detroit's wintertime air, says a new University of Colorado Boulder study.

The CU-Boulder study showed that of the four Midwestern cities in the experiment, two cities had significant quantities of fecal bacteria in the atmosphere -- with dog feces being the most likely source.

"We found unexpectedly high bacterial diversity in all of our samples, but to our surprise the airborne bacterial communities of Detroit and Cleveland most closely resembled those communities found in dog poop," said lead author Robert Bowers, a graduate student in CU-Boulder's ecology and evolutionary biology department and the CU-headquartered Cooperative Institute for Research in Environmental Sciences, or CIRES. "This suggests that dog poop may be a potential source of bacteria to the atmosphere at these locations."

The study was published July 29 in Applied and Environmental Microbiology. Co-authors on the study included Noah Fierer, an assistant professor in CU-Boulder's ecology and evolutionary biology department and a CIRES fellow; Rob Knight, an associate professor in CU-Boulder's chemistry and biochemistry department; Amy Sullivan and Jeff Collett Jr. of Colorado State University; and Elizabeth Costello of the Stanford University School of Medicine.

Scientists already knew that bacteria exist in the atmosphere and that these bacteria can have detrimental effects on human health, triggering allergic asthma and seasonal allergies, Fierer said. But it is only in recent years that researchers have realized that there is an incredible diversity of bacteriaresiding in the air, he said.

"There is a real knowledge gap," said Fierer. "We are just starting to realize this uncharted microbial diversity in the air -- a place where you wouldn't exactly expect microbes to be living."

To gain further understanding of just what microbes are circulating in urban environments, the team analyzed the local atmosphere in the summer and winter at four locations in the Great Lakes region of the U.S. Three of the locations -- Chicago, Cleveland and Detroit -- are major cities with populations of greater than 2 million, and one location, Mayville, Wis., is a small town with a population of less than 6,000.

The team used nearly 100 air samples collected as part of a previous study conducted by Colorado State University. The CSU experiment investigated the impact of biomass burning and involved studying the impacts of residential wood burning and prescribed fires on airborne fine particle concentrations in the midwestern United States.

"What we've been looking at are the numbers and the types of bacteria in the atmosphere," Fierer said. "We breathe in bacteria every minute we are outside, and some of these bugs may have potential health implications."

The researchers analyzed the bacteria's DNA in the collected air samples and compared the bacteria they found against a database of bacteria from known sources such as leaf surfaces, soil, and human, cow and dog feces. They discovered that the bacterial communities in the air were surprisingly diverse and also that, in two of the four locations, dog feces were a greater than expected source of bacteria in the atmosphere in the winter.

In the summer, airborne bacteria come from many sources including soil, dust, leafsurfaces, lakes and oceans, Bowers said. But in the winter, as leaves drop and snow covers the ground, the influence that these environments have as sources also goes down. It is during this season that the airborne communities appeared to be more influenced by dog feces than the other sources tested in the experiment, he said.

"As best as we can tell, dog feces are the only explanation for these results," Fierer said. "But we do need to do more research."

The team plans to investigate the bacterial communities in other cities and to build a continental-scale atlas of airborne bacterial communities, Fierer said. "We don't know if the patterns we observed in those sites are unique to those cities," he said. "Does San Francisco have the same bacteria as New York? Nobody knows as yet."

Fierer believes it is important to pin down the types of bacteria in the air, how these bacteria vary by location and season, and where they are coming from.With this information, scientists can then investigate the possible impacts on human health, he said.

"We need much better information on what sources of bacteria we are breathing in every time we go outside," Fierer said.

The study was funded by the CIRES Innovative Research Program, the U.S. Environmental Protection Agency, the National Science Foundation, the Howard Hughes Medical Institute and the National Institutes of Health. The aerosol sample collection for this project was supported by the Lake Michigan Air Directors Consortium.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration.

Noah Fierer | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>