Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CU-Boulder stem cell research may point to new ways of mitigating muscle loss

New findings on why skeletal muscle stem cells stop dividing and renewing muscle mass during aging points up a unique therapeutic opportunity for managing muscle-wasting conditions in humans, says a new University of Colorado Boulder study.

According to CU-Boulder Professor Bradley Olwin, the loss of skeletal muscle mass and function as we age can lead to sarcopenia, a debilitating muscle-wasting condition that generally hits the elderly hardest.

The new study indicates that altering two particular cell-signaling pathways independently in aged mice enhances muscle stem cell renewal and improves muscle regeneration.

One cell-signaling pathway the team identified, known as p38 MAPK, appears to be a major player in making or breaking the skeletal muscle stem cell, or satellite cell, renewal process in adult mice, said Olwin of the molecular, cellular and developmental biology department. Hyperactivation of the p38 MAPK cell-signaling pathway inhibits the renewal of muscle stem cells in aged mice, perhaps because of cellular stress and inflammatory responses acquired during the aging process.

The researchers knew that obliterating the p38 MAPK pathway in the stem cells of adult mice would block the renewal of satellite cells, said Olwin. But when the team only partially shut down the activity in the cell-signaling pathway by using a specific chemical inhibitor, the adult satellite cells showed significant renewal, he said. "We showed that the level of signaling from this cellular pathway is very important to the renewal of the satellite cells in adult mice, which was a very big surprise," said Olwin.

A paper on the subject appeared online Feb. 16 in the journal Nature Medicine.

One reason the CU-Boulder study is important is that the results could lead to the use of low-dose inhibitors, perhaps anti-inflammatory compounds, to calm the activity in the p38 MAPK cell-signaling pathway in human muscle stem cells, said Olwin.

The CU-Boulder research team also identified a second cell-signaling pathway affecting skeletal muscle renewal – a receptor known as the fibroblast growth factor receptor-1, or FGFR-1. The researchers showed when the FGFR-1 receptor protein was turned on in specially bred lab mice, the renewal of satellite cells increased significantly. "We still don't understand how that particular mechanism works," he said.

Another major finding of the study was that while satellite cells transplanted from young mice to other young mice showed significant renewal for up to two years, those transplanted from old mice to young mice failed. "We found definitively that satellite cells from an aged mouse are not able to maintain the ability to replenish themselves," Olwin said. "This is likely one of the contributors to loss of muscle mass during the aging process of humans."

Co-authors included first author and CU-Boulder postdoctoral researcher Jennifer Bernet, former CU-Boulder graduate student John K. Hall, CU-Boulder undergraduate Thomas Carter, and CU-Boulder postdoctoral researchers Jason Doles and Kathleen Kelly-Tanaka. The National Institutes of Health and the Ellison Medical Foundation funded the study.

Olwin said skeletal muscle function and mass decline with age in humans beginning at roughly age 40. While there are a variety of muscle-wasting diseases -- ranging from muscular dystrophy to Lou Gehrig's disease -- the condition known as sarcopenia can lead to severe muscle loss, frailty and eventual death and is leading to skyrocketing health care costs for the elderly. "If you live long enough, you'll get it," he said.

Olwin and his team worked closely on the research with a team from Stanford University led by Professor Helen Blau, which published a companion paper in the same issue of Nature Medicine. "We shared data with the Stanford team during the entire process and we all were very pleased with the study outcomes," said Olwin. "This is how science should work."

Bradley Olwin, 303-492-6816
Jim Scott, CU-Boulder media relations, 303-492-3114

Bradley Olwin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Understanding a missing link in how antidepressants work
25.11.2015 | Max Planck Institute of Psychiatry, München

nachricht Plant Defense as a Biotech Tool
25.11.2015 | Austrian Centre of Industrial Biotechnology (ACIB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>