Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder stem cell research may point to new ways of mitigating muscle loss

17.02.2014
New findings on why skeletal muscle stem cells stop dividing and renewing muscle mass during aging points up a unique therapeutic opportunity for managing muscle-wasting conditions in humans, says a new University of Colorado Boulder study.

According to CU-Boulder Professor Bradley Olwin, the loss of skeletal muscle mass and function as we age can lead to sarcopenia, a debilitating muscle-wasting condition that generally hits the elderly hardest.

The new study indicates that altering two particular cell-signaling pathways independently in aged mice enhances muscle stem cell renewal and improves muscle regeneration.

One cell-signaling pathway the team identified, known as p38 MAPK, appears to be a major player in making or breaking the skeletal muscle stem cell, or satellite cell, renewal process in adult mice, said Olwin of the molecular, cellular and developmental biology department. Hyperactivation of the p38 MAPK cell-signaling pathway inhibits the renewal of muscle stem cells in aged mice, perhaps because of cellular stress and inflammatory responses acquired during the aging process.

The researchers knew that obliterating the p38 MAPK pathway in the stem cells of adult mice would block the renewal of satellite cells, said Olwin. But when the team only partially shut down the activity in the cell-signaling pathway by using a specific chemical inhibitor, the adult satellite cells showed significant renewal, he said. "We showed that the level of signaling from this cellular pathway is very important to the renewal of the satellite cells in adult mice, which was a very big surprise," said Olwin.

A paper on the subject appeared online Feb. 16 in the journal Nature Medicine.

One reason the CU-Boulder study is important is that the results could lead to the use of low-dose inhibitors, perhaps anti-inflammatory compounds, to calm the activity in the p38 MAPK cell-signaling pathway in human muscle stem cells, said Olwin.

The CU-Boulder research team also identified a second cell-signaling pathway affecting skeletal muscle renewal – a receptor known as the fibroblast growth factor receptor-1, or FGFR-1. The researchers showed when the FGFR-1 receptor protein was turned on in specially bred lab mice, the renewal of satellite cells increased significantly. "We still don't understand how that particular mechanism works," he said.

Another major finding of the study was that while satellite cells transplanted from young mice to other young mice showed significant renewal for up to two years, those transplanted from old mice to young mice failed. "We found definitively that satellite cells from an aged mouse are not able to maintain the ability to replenish themselves," Olwin said. "This is likely one of the contributors to loss of muscle mass during the aging process of humans."

Co-authors included first author and CU-Boulder postdoctoral researcher Jennifer Bernet, former CU-Boulder graduate student John K. Hall, CU-Boulder undergraduate Thomas Carter, and CU-Boulder postdoctoral researchers Jason Doles and Kathleen Kelly-Tanaka. The National Institutes of Health and the Ellison Medical Foundation funded the study.

Olwin said skeletal muscle function and mass decline with age in humans beginning at roughly age 40. While there are a variety of muscle-wasting diseases -- ranging from muscular dystrophy to Lou Gehrig's disease -- the condition known as sarcopenia can lead to severe muscle loss, frailty and eventual death and is leading to skyrocketing health care costs for the elderly. "If you live long enough, you'll get it," he said.

Olwin and his team worked closely on the research with a team from Stanford University led by Professor Helen Blau, which published a companion paper in the same issue of Nature Medicine. "We shared data with the Stanford team during the entire process and we all were very pleased with the study outcomes," said Olwin. "This is how science should work."

Contact:
Bradley Olwin, 303-492-6816
bradley.olwin@colorado.edu
Jim Scott, CU-Boulder media relations, 303-492-3114
jim.scott@colorado.edu

Bradley Olwin | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>