Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CT45, an Unexpected Link Between Hodgkin Lymphoma and Reproductive Germ Cells

26.02.2010
Hodgkin lymphoma, a distinctive group of malignant lymphoma first described by Thomas Hodgkin in 1832, remains mysterious in many aspects today, more than 175 years since its initial description. Unlike most lymphomas, where the affected lymphoid organs are overtaken by sheets of tumor cells, the malignant cells in Hodgkin lymphoma often exist as individual giant cells in solitude, interspersed in between numerous benign small lymphocytes.

The origin of these neoplastic giant cells, called Reed-Sternberg cells, and how they have attracted their accompanying benign lymphocytes, have baffled scientists and hematologists for many decades. These malignant cells are now considered to be derived from B lymphocytes, and yet they do not express many molecules that are found in most B lymphocytes, and doubts remain about the true origin of these malignant cells.

In a paper published in the Proceedings of the National Academy of Sciences (PNAS) earlier this month, the laboratory of Dr. Lloyd J. Old of the Ludwig Institute for Cancer Research (LICR), together with Dr. Yao-Tseng Chen at Weill Cornell Medical College and their collaborators, made the finding that CT45, a cancer/testis (CT) antigen normally expressed in testicular germ cells in both prenatal and adult life, is expressed by the Reed-Sternberg cells in most of the classical Hodgkin lymphomas.

CT antigen was a term coined by Old and Chen in 1996 to describe an unusual group of germ cell antigens that they and others had discovered in their quest for tumor antigens for cancer immunotherapy. This group of antigens is normally silenced in all other normal cells in adult, and yet is aberrantly activated and expressed in a subset of various human cancers, often eliciting immune response in cancer patients.

Chen and Old discovered CT45 in 2005 and went on to show that CT45 is expressed in many cancers, notably in ovarian cancer and lung cancer. In contrast to the expression of CT45 in these epithelial cancers, they described in the current paper that CT45 expression in Hodgkin lymphoma is much more frequent, particularly when compared to other CT antigens, which are expressed in 0-25% in Hodgkin lymphoma. This high frequency of strong expression of CT45 in Hodgkin lymphoma indicates that CT45 could be a cancer vaccine target for Hodgkin lymphoma and related grey-zone lymphoma—lymphomas that bear the characteristics of both classic Hodgkin lymphoma as well as diffuse large B cell lymphoma, or non-Hodgkin lymphoma.

Even more intriguing, this finding points to a link between the malignant transformation in Hodgkin lymphoma and the process of germ cell development. These findings strengthen the theory that CT-coding genes that are active at the earliest stages of life, silenced in normal adult tissue, and then re-expressed in cancer, are major contributors to the abnormal growth and invasive properties of cancer.

Contact:
Brian M. Brewer
Director of Communications
Cancer Research Institute
+1(212) 688-7515, ext. 242
bbrewer@cancerresearch.org
Reference Publication: Chen YT et al. Expression of cancer testes antigen CT45 in classical Hodgkin lymphoma and other B-cell lymphomas. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3093-8. Epub 2010 Jan 26.

About the Ludwig Institute for Cancer Research (LICR) New York Branch of Human Cancer Immunology at Memorial Sloan-Kettering Cancer Center (MSKCC). The New York Branch of Human Cancer Immunology at Memorial Sloan-Kettering Cancer Center is one of the ten research branches of the Ludwig Institute for Cancer Research, a global non-profit institute committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery.

The New York Branch of Human Cancer Immunology’s main objective is the identification of suitable targets for antibody-based and vaccine-based immunotherapies of cancer. Over the years, the laboratory has defined a wide range of antibodies that target cell surface antigens on human cancer cells, as well as a range of intracellular antigens targeted by humoral and cellular immune responses. Based on detailed serological, biochemical, cellular, immunohistochemical and genetic characterization, a number of these antibodies and tumor antigens have been selected for early phase clinical trials. http://www.licr.org

Brian M. Brewer | Newswise Science News
Further information:
http://www.licr.org
http://www.cancerresearch.org

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>