Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL team shows how loss of key protein promotes aggressive form of leukemia

02.07.2010
p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal of myeloid precursors

Cold Spring Harbor, NY – New research by scientists at Cold Spring Harbor Laboratory (CSHL) has illuminated in fine detail one of the genetic paths that leads to a particularly aggressive form of leukemia.

CSHL Professor Scott W. Lowe. Ph.D., an Investigator of the Howard Hughes Medical Institute, led a team of scientists who wanted to know more about how the absence of an important tumor-suppressing protein called p53 combines with another genetic "hit" in immature blood cells to give rise to acute myeloid leukemia, or AML. In experiments in living mice, the team discovered that if p53 is disabled in immature blood-cell "precursors" in which a mutation in a gene called Kras is also present, a built-in braking mechanism fails to engage and the cells proliferate out of control.

Mutations in p53, the gene that encodes the p53 "master tumor-suppressor" protein, had previously been associated with drug resistance and adverse outcome in AML. The mechanism, however, was a matter of conjecture prior to the new results, which are published in the July 1 issue of Genes & Development.

"Our team has shown how mutations in Kras and p53 act to reinforce one another to change the character of blood precursor cells, transforming them into cells that can renew themselves – and thus proliferate – indefinitely, somewhat as cancer stem cells are theorized to do," says Lowe.

Under normal conditions, the ability to self-renew is possessed only by stem cells. Once stem cells give birth to "daughter" cells, those cells commit to a developmental pathway, and to a process called differentiation, that ends in their maturation as cells of a specific type. Blood-cell precursors, which are the "daughters" of hematopoietic stem cells, or HSCs, can differentiate into various kinds of mature blood cells, which normally have a finite lifespan. Recently, p53 has been shown to enforce this program in healthy stem cells -- not only HSCs, but also breast and embryonic stem cells.

Graduate student Zhen Zhao, postdoctoral researcher Johannes Zuber, M.D., along with Lowe and others, hypothesized that loss of the p53 protein could impair the programmed cell fate and mortality of myeloid progenitors. "Although myeloid progenitors and their differentiated progeny normally lack self-renewal capabilities," explains Zhao, "these cells apparently acquire this ability during the course of leukemia development. How this happens is what we set out to discover."

Zhao and colleagues knew that mutations in Kras and other genes in the Ras signaling pathway can trigger replication stress in immature blood cells, in some instances calling p53 into action. That protein possesses a range of biological activities that are thought to contribute to its role in tumor suppression, including the ability to induce a cell to commit suicide (apoptosis) or to enter a quiescent state in which it can no longer multiply (senescence). When the p53 protein is missing or inactive, for instance due to a mutation in the gene that encodes it, a potentially vital element in a cell's "braking" system is disabled. Indeed, "mutational disruption of the p53 network is thought to occur in virtually all aggressive end-stage cancers," notes Zhao, although mutations are seen in only 10%-15% of AML cases at diagnosis. Those tend to be the cases most resistant to therapy and most likely to be lethal.

Using so-called mosaic mouse models, the Lowe lab recently demonstrated that p53 mutations could specifically confer resistance to chemotherapeutic agents used to treat AML in human patients. Zhao, Zuber and colleagues took advantage of these genetically hybrid mice and a technology called RNA interference, or RNAi. Using a short-hairpin RNA molecule, they inactivated the p53 gene in hematopoietic cells that also had mutations that made Kras oncogenic. Myeloid precursor cells with only the Kras mutation are proliferative, but not self-renewing. But the team observed that cells with oncogenic Kras combined with a p53 deficiency did acquire the capacity to indefinitely self-renew, and transform into leukemia-initiating cells.

"Mice with one or the other mutation do develop T-cell malignancies, albeit ones with long latencies," Zhao says. "But we showed how suppression of p53 cooperates with oncogenic Kras to promote AML of the treatment-resistant type. Importantly, we found that loss of p53, independently of oncogenic Kras activation, promotes the proliferation of myeloid progenitors." It is the combination of p53 loss and activation of oncogenic Kras that confers upon these cells the ability to continually self-renew – and thus give rise to aggressive AML.

"In this work, we discovered a new tumor-suppressing function of p53, distinct, for instance, from apoptosis, and somewhat related to senescence," said Zuber. "We showed that it has the ability to reinforce cell-fate and differentiation programs. In AML, p53 loss leads to cancer by disabling this reinforcement. The question we are now eager to answer is whether p53 has similar functions in other types of cancer."

"p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal" appears in Genes & Development July 1. The full list of authors is: Zhen Zhao, Johannes Zuber, Ernesto Diaz-Flores, Laura Lintault, Scott C. Kogan, Kevin Shannon and Scott W. Lowe. The paper can be obtained online at: http://genesdev.cshlp.org

Cold Spring Harbor Laboratory (CSHL) is a private, not-for-profit research and education institution at the forefront of efforts in molecular biology and genetics to generate knowledge that will yield better diagnostics and treatments for cancer, neurological diseases and other major causes of human suffering.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>