Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL team identifies enzyme that is an important regulator of aggressive breast cancer development

01.07.2011
PTPN23 can regulate the SRC oncoprotein; basis for a new therapeutic approach

Researchers at Cold Spring Harbor Laboratory (CSHL) have identified an enzyme that appears to be a significant regulator of breast cancer development. Called PTPN23, the enzyme is a member of a family called protein tyrosine phosphatases, or PTPs, that plays a fundamental role in switching cell signaling on and off.

When the scientists suppressed the expression of PTPN23 in human mammary cells, they noted a cascade of effects that included the cells breaking away from their anchors; their scattering; and their invasion through extracellular matrix (essentially, cells' mooring in tissue). These are the hallmarks of metastasis, the primary cause of mortality in cancer.

PTPs are able to affect cell signaling as a consequence of their very specific biochemical function: they remove phosphate groups from other molecules. Another family of enzymes, called kinases, does precisely the opposite: its members add phosphate groups, and in so doing, work together with the PTPs to regulate cell signaling.

CSHL Professor Nicholas Tonks, who purified the first PTP over 20 years ago, is an authority on phosphatases. He teamed up with CSHL Associate Professor Senthil Muthuswamy, an expert on kinases and breast cancer biology, who is also affiliated with the University of Toronto. They and their colleagues methodically suppressed each of the 105 known PTPs, in a cell culture system constructed to simulate mammary epithelial tissue. The cells were also modified so that the cancer-promoting receptor protein called HER2 (itself a kinase) could be activated selectively. Overabundant HER2 protein (also called ErbB2) is associated with aggressive disease and poor prognosis, and is found in about one-fourth of those who have breast cancer.

To determine the possible impact of PTPs on cancer development in cells expressing activated HER2, the team assembled a library of short-hairpin RNA molecules, or shRNAs, which had the ability to inactivate, one by one, the genes responsible for expressing each PTP. Of the 105 PTPs, they observed that three of them, when suppressed, were associated with increased motility, or the ability of the mammary cells to move freely of one another. The suppression of one of these three -- PTPN23 -- was also observed to cause the cells to become invasive.

Part of what makes this finding intriguing is the fact that the CSHL team was able to trace the cause of these effects to specific elements of a complex signaling cascade. And this, in turn, has led the team to identify a potentially powerful new therapeutic strategy in this aggressive cancer type.

They discovered that PTPN23, under normal conditions, i.e., when not suppressed, recognizes and removes phosphate groups from three molecules important in the signaling cascade in breast epithelial cells. These three molecules are called SRC, E-cadherin and â-catenin. Of the three, the key is SRC: it is a type of kinase that, like HER2, is well known to be a cancer-promoter. SRC-induced anomalies in cell signaling have been linked with breast and other cancer types.

Tonks, Muthuswamy and colleagues demonstrated for the first time that this particular PTP -- PTPN23 -- acts directly on SRC to inhibit its phosphate-adding activity. But when PTPN23 is suppressed, as in the team's experiments, SRC is free to add phosphates to other molecules in the cell, including E-cadherin and â-catenin. Normally, these molecules are important in cell adhesion. But when they are phosphorylated by SRC, their ability to function as the "glue" that holds cells to their anchors in epithelial tissue is impaired, and the cells are able to break free. This adds interest to the observation, made by others, that the gene that expresses PTPN23 is located within a "hotspot" on human chromosome 3 (3p21) that is mutated in breast and other cancers.

"Considering the negative effect of PTPN23 on SRC activity, loss of PTPN23 may promote tumor growth and metastasis in breast tumors that are associated with activation of SRC," the team suggests in a paper on the research published today in the journal Genes & Development.

This fine-grained picture of how an absence of PTPN23 can set in motion a chain of events in breast epithelial cells that promotes cancer proliferation in turn suggests the next step in the research. The team tried and was able to reverse the metastatic effects set in train by PTPN23 suppression in these cancer-cell models by introducing a candidate drug molecule called SU6656, which inhibits SRC.

On the theory that PTPN23 regulates the activity of SRC and the phosphorylation status of the E-cadherin/â-catenin signaling complexes to modulate cell motility, invasion and scattering, the team has moved to a new set of experiments in living mice which have been genetically engineered to lack PTPN23. In such animals, they expect aggressive tumors to form. They seek to address these by treating the mice with inhibitors of SRC.

"Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the 'PTP-ome'" appears July 1 in Genes & Development. The authors are: Guang Lin, Victoria Aranda, Senthil K. Muthuswamy and Nicholas K. Tonks. The paper can be obtained online at: http://www.genesdev.org/cgi/doi/10.1101/gad.2018911

About CSHL

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 400 scientists strong and its Meetings & Courses program hosts more than 8,000 scientists from around the world each year. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>