Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL team develops mouse models of leukemia that predict response to chemotherapy

02.04.2009
p53 gene network is key determinant of response; its attenuation causes drug resistance

Being able to accurately predict how a given cancer will respond to chemotherapy would spare patients with non-responsive tumors the burden of undergoing toxic and ultimately unhelpful treatment. Just as important, knowing which of a patient's cancer-causing genetic lesions are contributing to drug resistance might help doctors redesign therapy for maximum benefit.

Researchers led by Professor Scott Lowe, Ph.D., of Cold Spring Harbor Laboratory (CSHL), have come closer to achieving these critical goals for human cancer therapy by developing new mouse models for human acute myeloid leukemia (AML), an aggressive and devastating cancer of white blood cells.

As Lowe and colleagues report in the April 1st issue of the journal Genes and Development, their models, which include treatment protocols that closely mimic current AML therapy in people, precisely recapitulate genetic associations that have been linked to favorable or adverse treatment responses in patients. These findings provide compelling evidence for the notion that such models can predict how human cancers will respond to therapy and help to identify genes promoting resistance or sensitivity to any cancer drug. The mouse models, the CSHL team notes, also serve as an effective test system for new drugs and treatment strategies in AML.

Need for a reliable prediction model

"By giving us a better understanding of how a cancer's genetic makeup, or 'genotype,' influences the outcomes of treatment, these models might help improve how existing drugs are used in people, and spur the design of more effective therapies," Lowe observes. "The new models are an important preclinical tool that will allow knowledge gained from cancer genetics to be put to effective use in the clinic."

The Lowe team's mouse models also provide valuable insights into how leukemia develops and progresses. Their study traces the intracellular network controlled by the p53 gene, a linchpin of the cell's anti-tumor defense response, as the key determinant of AML's aggressiveness and response to therapy.

Most patients with AML receive the same standardized treatment – an initial phase of intense chemotherapy followed by additional chemotherapy cycles or bone marrow transplantation. Yet only a quarter of patients are cured and most die within a few months. This diversity in treatment response is due to AML's genetic heterogeneity, meaning that the hundred or so mutations associated with this form of cancer occur in different combinations in each patient and influence therapeutic outcomes in different ways.

Some gene mutations in cancer have been correlated with clinical outcome. But AML has proved to be genetically too complex, and the current experimental systems for predicting treatment response too unreliable for the information to be used in a standard way in the clinic.

These standard systems, in which anticancer drugs were tested in human cancer-cell lines, do not factor in the effects of a real tumor's environment on its growth. At the same time, placing these cells into animals to create a so-called "xenotransplant" model has not been an effective solution, according to Johannes Zuber, M.D., a Clinical Fellow in the Lowe lab who played a key role in the research and is first author on the team's paper. The reason, explains Zuber, is that "the cells are so poorly defined at the genetic level and tend to defy analysis of the molecular factors that influence drug response."

Making mice with human-like AML

Lowe's group surmounted these problems by first identifying the most commonly occurring mutations in a group of 111 children with AML and then engineering these mutations into mice, which soon developed leukemia. Among the participating AML patients, the two most common mutations were observed to occur when chromosomes broke apart and reattached in new places. This incorrect fusion is thought to create cancer-causing genes, or "oncogenes," that encode so-called fusion proteins. It's the proteins that are the most immediate "cause" of cancer. They profoundly disturb the developmental program of cells.

Both oncogenic mutations identified by Lowe's team in AML patients have been well studied. The oncogene AML1/ETO previously has been associated with a favorable therapeutic outcome in people, while fusion oncogenes involving the MLL gene have been associated with an adverse outcome. To design an animal model that predicts these outcomes, the team introduced each mutation individually into stem and progenitor cells along with another oncogene, called Nras, which also appears frequently in human AML and is commonly found in concert with AML1/ETO and MLL fusion genes.

These altered stem cells were transplanted into mice that were first treated with radiation to destroy existing bone marrow cells. The altered stem cells then took over the "host" bone marrow and promoted the development of leukemia. To track leukemia onset and response to therapy, the scientists tagged all leukemia cells with a gene from fireflies that encodes an enzyme called luciferase, which makes leukemia cells glow and detectable by a ultrasensitive camera. Within weeks, the mice developed leukemias that showed the same genetic and pathological features as human AML.

"We were therefore certain," says Lowe, "that these animals were good models for studying the impact of cancer's genetic heterogeneity on therapy response and getting a correct read-out in terms of outcome prediction."

Sensitivity vs. resistance to chemotherapy

Experiments in which the team treated the mice with the same chemotherapy regimen administered to AML patients have proved Lowe to be correct. Just as in humans, leukemias in mice that received the AML1/ETO oncogene were also sensitive to chemotherapy and soon regressed, whereas MLL-triggered leukemias remained resistant and eventually killed their hosts.

The models also proved useful in helping the scientists identify the molecular basis of this difference in outcome. The chemosensitive mice with AML1/ETO-triggered leukemia had a distinct gene expression "signature" that was absent in the others; the genes whose expression was most significantly altered in the sensitive mice belong to a network controlled by p53 – the gene that masterminds the cell's anti-tumor defense.

Unlike the treatment-resistant mice, the treatment-sensitive mice showed a robust activation of the p53 network. This activation was critical for a favorable outcome: when the team knocked out p53 in the chemosensitive mice, their leukemia became drug-resistant and aggressive.

"These results in the new animal models suggest that AML patients diagnosed with the MLL chromosome rearrangement will not show durable responses to standard chemotherapy," according to Lowe, Zuber, and colleagues. "These patients should be offered alternative therapeutic approaches at diagnosis."

Hema Bashyam | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>