Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL study finds short- and long-term memories require same gene but in different circuits

20.08.2009
The gene rutabaga initiates rapid, short-lived signals in one group of neurons in the fruit fly brain and slower, long-lasting signals in a second set

Why is it that you can instantly recall your own phone number but have to struggle with your mental Rolodex to remember a new number you heard a few moments ago? The two tasks "feel" different because they involve two different types of memory – long-term and short-term, respectively – that are stored very differently in the brain. The same appears to be true across the animal kingdom, even in insects such as the fruit fly.

Assistant Professor Josh Dubnau, Ph.D., of Cold Spring Harbor Laboratory (CSHL) and his team have uncovered an important molecular and cellular basis of this difference using the fruit fly as a model. The results of their study appear in the August 25 issue of Current Biology.

The CSHL team has found that when fruit flies learn a task, each of two different groups of neurons that are part of the center of learning and memory in the fly brain simultaneously forms its own unique memory signal or trace. Both types of trace, the team discovered, depend on the activity of a gene called rutabaga, of which humans also have a similar version. A rapidly occurring, short-lived trace in a group of neurons that make up a structure called the "gamma" (ã) lobe produces a short-term memory. A slower, long-lived trace in the "alpha-beta" (áâ) lobe fixes a long-term memory.

A tale of two lobes

Neuroscientists call the rutabaga gene a coincidence detector because it codes for an enzyme whose activity levels get a big boost when a fly perceives two stimuli that it has to learn to associate with one another. This enzymatic activity in turn signals to other genes critical for learning and memory.

A classic experiment that teaches flies to associate stimuli – and one that the CSHL team used – is to place them in a training tube attached to an electric grid, and to administer shocks through the grid right after a certain odor is piped into the tube. Flies with normal rutabaga genes learn to associate the odor with the shock and if given a choice, buzz away from the grid. But flies that carry a mutated version of rutabaga in their brains lack both short- and long-term memory, don't learn the association, and so fail to avoid the shocks.

The team has now found, however, that this total memory deficit does not occur when flies carry the mutated version in either the ã or in the áâ lobes. Flies in which normal rutabaga function was restored within the ã lobe alone regained short-term memory but not long-term memory. Restoring the gene's function in the áâ lobe alone restored long-term memory, but not short-term memory.

Long- and short-term memory involve different circuits

"This ability to independently restore either short- or long-term memory depending on where rutabaga is expressed supports the idea that there are different anatomical and circuit requirements for different stages of memory," Dubnau explains. It also challenges a previously held notion that neurons that form short-term memory are also involved in storing long-term memory.

Previous biochemical studies have suggested that rapid, short-lived signals characteristic of short-term memory cause unstable changes in a neuron's connectivity that are then stabilized by slower, long-lasting signals that help establish long-term memory in the same neuron. But anatomy studies have long hinted at different circuits. Surgical lesions that destroy different parts of an animal's brain can separately disrupt the two kinds of memory, suggesting that the two memory types might involve different neuronal populations.

"We've now used genetics as a finer scalpel than surgery to reconcile these findings," Dubnau says. His team's results suggest that biochemical signaling for both types of memory are triggered at the same time, but in different neuron sets. Memory traces form more quickly in one set than the other, but the set that lags behind consolidates the memory and stores it long-term.

Why two mechanisms?

But why might the fly brain divide up the labor of storing different memory phases this way? Dubnau's hunch is that it might be because for every stimulus it receives, the brain creates its own representation of this information. And each time this stimulus – for example, an odor – is perceived again, the brain adds to the representation and modifies it. "Such modifications might eventually disrupt the brain's ability to accurately remember that information," Dubnau speculates. "It might be better to store long-term memories in a different place where there's no such flux."

The team's next mission is to determine how much cross talk, if any, is required between the two lobes for long-term memory to get consolidated. This work will add to the progress that scientists have already made in treating memory deficits in humans with drugs aimed at molecular members of the rutabaga-signaling pathway to enhance its downstream effects.

"Short- and Long-Term memory in Drosophila Require camp Signaling in Distinct Neuron Types," appears in the August 25 issue of Current Biology. The full citation is: Allison. L. Blum, Wanhe Li, Mike Cressy, and Josh Dubnau. The paper is available online at http://www.cell.com/current-biology/abstract/S0960-9822(09)01398-0 (doi:10.1016/j.cub.2009.07.016)

Cold Spring Harbor Laboratory (CSHL) is a private, not-for-profit research and education institution at the forefront of efforts in molecular biology and genetics to generate knowledge that will yield better diagnostics and treatments for cancer, neurological diseases and other major causes of human suffering.

Hema Bashyam | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>