Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL study finds that 2 non-coding RNAs trigger formation of a nuclear subcompartment

20.12.2010
The nucleus of a cell, which houses the cell's DNA, is also home to many structures that are not bound by a membrane but nevertheless exist as distinct compartments. A team of Cold Spring Harbor Laboratory (CSHL) scientists has discovered that the formation of one of these nuclear subcompartments, called paraspeckles, is triggered by a pair of RNA molecules, which also maintain its structural integrity.

As reported in a study published online ahead of print on December 19 in Nature Cell Biology, the scientists discovered this unique structure-building role for the RNAs by keeping a close watch on them from the moment they come into existence within a cell's nucleus. The scientists' visual surveillance revealed that when the genes for these RNAs are switched on, and the RNAs are made, they recruit other RNA and protein components and serve as a scaffolding platform upon which these components assemble to form paraspeckles.

The two RNAs described in the study, named MENå and MENâ, are "non-coding" RNAs —a type of RNA that does not serve as a code or template for the synthesis of cellular proteins. The genes that give rise to these non-coding RNAs are now thought to make up most of the human genome, in contrast to the genes that produce protein-coding RNAs, which account for approximately 2% of the human genome.

"We've known for several years that much of the other 98% of the genome doesn't encode for useless RNA," explains CSHL's Professor David L. Spector, who led the current study. "Various types of non-coding RNAs have been found that regulate the activity of protein-coding genes and cellular physiology in different ways. Our results reveal a new and intriguing function for a non-coding RNA—the ability to trigger the assembly and maintenance of a nuclear body."

The nuclear bodies in question—the paraspeckles—are believed to serve as nuclear storage depots for RNAs that are ready to be coded, or translated, into proteins but are retained in the cell nucleus. Paraspeckles are thought to release this RNA cache into the cell's cytoplasm—the site of protein synthesis—under certain physiological conditions, such as cellular stress. Spector estimates that storing pre-made protein-coding RNA within the paraspeckles and releasing them as needed allows the cell to respond faster than if it had to make the RNA from scratch.

Previous experiments by Spector's team and two other groups indicated that MENå and MENâ RNAs were the critical elements for paraspeckle formation. "What wasn't clear was how the paraspeckles actually form and the dynamics of how the non-coding MEN RNAs help organize and maintain its structure," says Spector.

To address this question, the team developed an innovative approach—spearheaded by CSHL postdoctoral fellow Yuntao (Steve) Mao and graduate student Hongjae Sunwoo—to peer into living cells and capture the real-time dynamics of the interactions among the set of molecules known to be involved in paraspeckle formation. The scientists engineered cells in which each of these players—the MENå/â genes, the newly formed MEN RNAs, and the various paraspeckle protein components—each carried a different colored fluorescent tag. The cells were also genetically manipulated such that the MEN genes could be switched on by exposing the cells to a drug.

The resulting movies shot by the Spector team, showed that within five minutes of switching on the MENå/â gene, individual paraspeckle proteins arrived and assembled at the sites of MEN RNA transcription. As the RNA transcripts accumulated, the fully functional paraspeckles enlarged in tandem and eventually broke away to cluster around the transcription sites.

"Our experiments show that it is the act of MEN RNA transcription alone that triggers paraspeckle formation and sustains them," says Spector. In the absence of transcriptional activity—such as during cell division or when the scientists added drugs that block RNA transcription or specifically switched off the MEN genes—the newly formed paraspeckles fell apart.

This dependency on RNA transcription seems to be unique, as other nuclear compartments such as Cajal bodies can form when one of their components is simply tethered to a site on the genome, which in turn causes other components to coalesce around it. In contrast, says Spector, "Paraspeckles seem to follow a different assembly model in which MEN non-coding RNAs serve as seeding molecules that are driven by transcription to recruit the other components."

This work was supported by grants from the National Institute of General Medical Sciences, one of the National Institutes of Health.

"Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs," is embargoed until 1pm EST on December 19 and will appear online ahead of print in Nature Cell Biology. The full citation is: Yuntao S. Mao, Hongjae Sunwoo, Bin Zhang, and David L. Spector.

Hema Bashyam | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>