Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL scientists discover link between control of chromosome duplication and segregation

09.02.2009
Team finds that Orc1, part of machinery that initiates DNA replication, prevents excess centrosome duplication

Before a cell can divide into two, first it must duplicate its genetic material--the DNA packed in its chromosomes. The two new sets of chromosomes then have to be separated from one another and correctly distributed to the resulting "daughter" cells, so that both daughter cells are genetically identical to the original, or "parent," cell.

During cell division, a cellular organ called the centrosome, and a copy of the centrosome, position themselves at opposite ends of the dividing cell. Each centrosome serves as an anchor for a spindle, a complex structure of filament-like tubules that radiates out from each centrosome and connects with special sites called centromeres on the chromosomes. By pulling on the chromosomes, the spindles separate them into two sets, each divided equally into the two emerging daughter cells.

It's crucial that cells duplicate their centrosome only once during each division cycle. Extra copies can result in incorrect distribution of chromosomes, which can lead to genomic instability and cancer. Hence the importance of new research by Professor Bruce Stillman, Ph.D., and his lab group at Cold Spring Harbor Laboratory (CSHL). They have identified a protein molecule that controls the copying of the centrosome in human cells and prevents it from being re-duplicated. Their findings will appear in the February 6th issue of the journal Science.

Double duty for Orc1

The molecule shown by Dr. Stillman and his colleagues to control centrosome duplication is Orc1, one of six proteins that comprise the Origin Recognition Complex. ORC, as it is called, is an assembly that attaches to particular sequences within all the DNA in the cell and prepares it for duplication. Recently it had become clear that some ORC proteins might be doing more than jump-starting DNA duplication; the accumulation of extra centrosome copies in cells that lack ORC suggested that some or all ORC proteins might play a role in centrosome duplication as well.

To investigate which of the ORC proteins limit centrosome copying, Stillman and co-investigators Adriana Hemerly, Supriya Prasanth and Khalid Siddiqui, used RNA interference, or RNAi, a technique that uses small pieces of RNA to shut off specific genes. They blocked the production of each of the proteins that combine to form ORC in human cells. Loss of Orc1 alone, the scientists found, spurred cells to accumulate excess centrosomes.

Cells that were induced to produce more Orc1, on the other hand, had the normal amount of centrosomes, even when centrosomes were induced to re-duplicate via drug treatment of cells. It was thus deduced that Orc1 allows cells to duplicate centrosomes once per division cycle, but prevents centrosomes from being re-duplicated.

This new role for Orc1 seems to be separate from its duties in helping cells copy DNA. The CSHL team found that a shortened version of Orc1 that lacked the ability to start DNA duplication was still able to limit centrosome copying to once per cell-division cycle.

Orc1 forces new centrosomes to stay in touch

Within each centrosome are a pair of tiny machines called centrioles. These duplicate during cell division to produce two centriole pairs. Stillman's laboratory found that Orc1 also controls the number of centrioles in a cell. Before a pair is copied, the two centrioles normally stay connected to each other. Upon the cell's commitment to cell division, however, the centriole pair is duplicated to produce two new centriole pairs; this occurs precisely as copying of the chromosomes gets under way.

Stillman's team hypothesizes that it is this "engagement" of the paired centrioles that stops the original centriole pair from duplicating. In cells that lacked Orc1, the CSHL scientists found that the centrioles were "disengaged" from the original, suggesting that Orc1 might prevent re-duplication by helping the new centrosomes to stay connected to the old.

This function of Orc1 depends on its ability to physically associate with the centrosomes, the researchers showed. They suggest that Orc1 is ferried to the centrosomes by the action of a protein known as Cyclin A. This protein is found at high levels in cells at the start of the division cycle and helps cells make one copy of their DNA.

But a related protein called Cyclin E may be the target of Orc1. Cyclin E, which was also found to associate with Orc1, is known to be required for centriole and centrosome duplication and also stimulates the duplication of DNA in chromosomes. Orc1 antagonizes Cyclin E activity so that it duplicates centrosomes but cannot re-duplicate them.

The scientists thus propose that Orc1 enforces the number of centrosome copies by moving to centrosomes during the short temporal window in the cell division cycle when Cyclin E is still present in the cell. "During this time, if the effects of Cyclin E activity aren't counteracted by Orc1, centrosome re-duplication can occur," explains Stillman.

"I also think that this discovery suggests an ancient link between the processes that duplicate DNA and the processes that separate the DNA in cells before cell division," he added.

"Orc1 controls centriole and centrosome copy number in human cells" will appear in the February 6th issue of Science. The full citation is: Adriana S. Hemerly, Supriya G. Prasanth, Khalid Siddiqui and Bruce Stillman. This article is available online at www.sciencemag.org. Bruce Stillman is President of the Laboratory in addition to running his own research laboratory.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>