Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL scientists discover link between control of chromosome duplication and segregation

09.02.2009
Team finds that Orc1, part of machinery that initiates DNA replication, prevents excess centrosome duplication

Before a cell can divide into two, first it must duplicate its genetic material--the DNA packed in its chromosomes. The two new sets of chromosomes then have to be separated from one another and correctly distributed to the resulting "daughter" cells, so that both daughter cells are genetically identical to the original, or "parent," cell.

During cell division, a cellular organ called the centrosome, and a copy of the centrosome, position themselves at opposite ends of the dividing cell. Each centrosome serves as an anchor for a spindle, a complex structure of filament-like tubules that radiates out from each centrosome and connects with special sites called centromeres on the chromosomes. By pulling on the chromosomes, the spindles separate them into two sets, each divided equally into the two emerging daughter cells.

It's crucial that cells duplicate their centrosome only once during each division cycle. Extra copies can result in incorrect distribution of chromosomes, which can lead to genomic instability and cancer. Hence the importance of new research by Professor Bruce Stillman, Ph.D., and his lab group at Cold Spring Harbor Laboratory (CSHL). They have identified a protein molecule that controls the copying of the centrosome in human cells and prevents it from being re-duplicated. Their findings will appear in the February 6th issue of the journal Science.

Double duty for Orc1

The molecule shown by Dr. Stillman and his colleagues to control centrosome duplication is Orc1, one of six proteins that comprise the Origin Recognition Complex. ORC, as it is called, is an assembly that attaches to particular sequences within all the DNA in the cell and prepares it for duplication. Recently it had become clear that some ORC proteins might be doing more than jump-starting DNA duplication; the accumulation of extra centrosome copies in cells that lack ORC suggested that some or all ORC proteins might play a role in centrosome duplication as well.

To investigate which of the ORC proteins limit centrosome copying, Stillman and co-investigators Adriana Hemerly, Supriya Prasanth and Khalid Siddiqui, used RNA interference, or RNAi, a technique that uses small pieces of RNA to shut off specific genes. They blocked the production of each of the proteins that combine to form ORC in human cells. Loss of Orc1 alone, the scientists found, spurred cells to accumulate excess centrosomes.

Cells that were induced to produce more Orc1, on the other hand, had the normal amount of centrosomes, even when centrosomes were induced to re-duplicate via drug treatment of cells. It was thus deduced that Orc1 allows cells to duplicate centrosomes once per division cycle, but prevents centrosomes from being re-duplicated.

This new role for Orc1 seems to be separate from its duties in helping cells copy DNA. The CSHL team found that a shortened version of Orc1 that lacked the ability to start DNA duplication was still able to limit centrosome copying to once per cell-division cycle.

Orc1 forces new centrosomes to stay in touch

Within each centrosome are a pair of tiny machines called centrioles. These duplicate during cell division to produce two centriole pairs. Stillman's laboratory found that Orc1 also controls the number of centrioles in a cell. Before a pair is copied, the two centrioles normally stay connected to each other. Upon the cell's commitment to cell division, however, the centriole pair is duplicated to produce two new centriole pairs; this occurs precisely as copying of the chromosomes gets under way.

Stillman's team hypothesizes that it is this "engagement" of the paired centrioles that stops the original centriole pair from duplicating. In cells that lacked Orc1, the CSHL scientists found that the centrioles were "disengaged" from the original, suggesting that Orc1 might prevent re-duplication by helping the new centrosomes to stay connected to the old.

This function of Orc1 depends on its ability to physically associate with the centrosomes, the researchers showed. They suggest that Orc1 is ferried to the centrosomes by the action of a protein known as Cyclin A. This protein is found at high levels in cells at the start of the division cycle and helps cells make one copy of their DNA.

But a related protein called Cyclin E may be the target of Orc1. Cyclin E, which was also found to associate with Orc1, is known to be required for centriole and centrosome duplication and also stimulates the duplication of DNA in chromosomes. Orc1 antagonizes Cyclin E activity so that it duplicates centrosomes but cannot re-duplicate them.

The scientists thus propose that Orc1 enforces the number of centrosome copies by moving to centrosomes during the short temporal window in the cell division cycle when Cyclin E is still present in the cell. "During this time, if the effects of Cyclin E activity aren't counteracted by Orc1, centrosome re-duplication can occur," explains Stillman.

"I also think that this discovery suggests an ancient link between the processes that duplicate DNA and the processes that separate the DNA in cells before cell division," he added.

"Orc1 controls centriole and centrosome copy number in human cells" will appear in the February 6th issue of Science. The full citation is: Adriana S. Hemerly, Supriya G. Prasanth, Khalid Siddiqui and Bruce Stillman. This article is available online at www.sciencemag.org. Bruce Stillman is President of the Laboratory in addition to running his own research laboratory.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>