Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL scientists discover link between control of chromosome duplication and segregation

09.02.2009
Team finds that Orc1, part of machinery that initiates DNA replication, prevents excess centrosome duplication

Before a cell can divide into two, first it must duplicate its genetic material--the DNA packed in its chromosomes. The two new sets of chromosomes then have to be separated from one another and correctly distributed to the resulting "daughter" cells, so that both daughter cells are genetically identical to the original, or "parent," cell.

During cell division, a cellular organ called the centrosome, and a copy of the centrosome, position themselves at opposite ends of the dividing cell. Each centrosome serves as an anchor for a spindle, a complex structure of filament-like tubules that radiates out from each centrosome and connects with special sites called centromeres on the chromosomes. By pulling on the chromosomes, the spindles separate them into two sets, each divided equally into the two emerging daughter cells.

It's crucial that cells duplicate their centrosome only once during each division cycle. Extra copies can result in incorrect distribution of chromosomes, which can lead to genomic instability and cancer. Hence the importance of new research by Professor Bruce Stillman, Ph.D., and his lab group at Cold Spring Harbor Laboratory (CSHL). They have identified a protein molecule that controls the copying of the centrosome in human cells and prevents it from being re-duplicated. Their findings will appear in the February 6th issue of the journal Science.

Double duty for Orc1

The molecule shown by Dr. Stillman and his colleagues to control centrosome duplication is Orc1, one of six proteins that comprise the Origin Recognition Complex. ORC, as it is called, is an assembly that attaches to particular sequences within all the DNA in the cell and prepares it for duplication. Recently it had become clear that some ORC proteins might be doing more than jump-starting DNA duplication; the accumulation of extra centrosome copies in cells that lack ORC suggested that some or all ORC proteins might play a role in centrosome duplication as well.

To investigate which of the ORC proteins limit centrosome copying, Stillman and co-investigators Adriana Hemerly, Supriya Prasanth and Khalid Siddiqui, used RNA interference, or RNAi, a technique that uses small pieces of RNA to shut off specific genes. They blocked the production of each of the proteins that combine to form ORC in human cells. Loss of Orc1 alone, the scientists found, spurred cells to accumulate excess centrosomes.

Cells that were induced to produce more Orc1, on the other hand, had the normal amount of centrosomes, even when centrosomes were induced to re-duplicate via drug treatment of cells. It was thus deduced that Orc1 allows cells to duplicate centrosomes once per division cycle, but prevents centrosomes from being re-duplicated.

This new role for Orc1 seems to be separate from its duties in helping cells copy DNA. The CSHL team found that a shortened version of Orc1 that lacked the ability to start DNA duplication was still able to limit centrosome copying to once per cell-division cycle.

Orc1 forces new centrosomes to stay in touch

Within each centrosome are a pair of tiny machines called centrioles. These duplicate during cell division to produce two centriole pairs. Stillman's laboratory found that Orc1 also controls the number of centrioles in a cell. Before a pair is copied, the two centrioles normally stay connected to each other. Upon the cell's commitment to cell division, however, the centriole pair is duplicated to produce two new centriole pairs; this occurs precisely as copying of the chromosomes gets under way.

Stillman's team hypothesizes that it is this "engagement" of the paired centrioles that stops the original centriole pair from duplicating. In cells that lacked Orc1, the CSHL scientists found that the centrioles were "disengaged" from the original, suggesting that Orc1 might prevent re-duplication by helping the new centrosomes to stay connected to the old.

This function of Orc1 depends on its ability to physically associate with the centrosomes, the researchers showed. They suggest that Orc1 is ferried to the centrosomes by the action of a protein known as Cyclin A. This protein is found at high levels in cells at the start of the division cycle and helps cells make one copy of their DNA.

But a related protein called Cyclin E may be the target of Orc1. Cyclin E, which was also found to associate with Orc1, is known to be required for centriole and centrosome duplication and also stimulates the duplication of DNA in chromosomes. Orc1 antagonizes Cyclin E activity so that it duplicates centrosomes but cannot re-duplicate them.

The scientists thus propose that Orc1 enforces the number of centrosome copies by moving to centrosomes during the short temporal window in the cell division cycle when Cyclin E is still present in the cell. "During this time, if the effects of Cyclin E activity aren't counteracted by Orc1, centrosome re-duplication can occur," explains Stillman.

"I also think that this discovery suggests an ancient link between the processes that duplicate DNA and the processes that separate the DNA in cells before cell division," he added.

"Orc1 controls centriole and centrosome copy number in human cells" will appear in the February 6th issue of Science. The full citation is: Adriana S. Hemerly, Supriya G. Prasanth, Khalid Siddiqui and Bruce Stillman. This article is available online at www.sciencemag.org. Bruce Stillman is President of the Laboratory in addition to running his own research laboratory.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>