Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL scientists develop new method to detect copy number variants using DNA sequencing technologies

26.08.2009
The new technique can detect key genetic variations overlooked by current methods

Cold Spring Harbor, N.Y. – A research team led by Associate Professor Jonathan Sebat, Ph.D., of Cold Spring Harbor Laboratory (CSHL) has developed a sensitive and accurate way of identifying gene copy number variations (CNVs).

The method, which is described in a paper published online ahead of print in Genome Research, uses new DNA sequencing technologies to look for regions of the genome that vary in copy number between individuals in the population. Capable of detecting a wide range of different classes of CNVs, large and small, this method allows researchers to extract more genetic information from the complete genome sequence of an individual.

CNVs are regions of the genome that vary in the number of copies between individuals. These variants were once considered to be anomalies that occurred rarely among healthy individuals. As the result of a discovery by CSHL Professor Michael Wigler and Dr. Sebat in 2004, CNVs are now recognized as a major source of human genetic variation and methods for detecting CNVs have proven to be an effective approach for identifying genetic risk factors for disease.

Genome sequencing technologies are improving at a rapid pace. The current challenge is to find ways to extract all of the genetic information from the data. One of the biggest challenges has been the detection of CNVs. Sebat, in collaboration with Seungtai Yoon of CSHL and Kenny Ye, Ph.D., at the Albert Einstein College of Medicine, developed a statistical method to estimate DNA copy number of a genomic region based on the number of sequences that map to that location (or "read depth"). When the genomes of multiple individuals are compared, regions that differ in copy number between individuals can be identified.

The new method allows the detection of small structural variants that could not be detected using earlier microarray-based methods. This is significant because most of the CNVs the genome are less than 5000 nucleotides in length. The new method is also able to detect certain classes of CNVs that other sequencing-based approaches struggle with, particularly those located in complex genomic regions where rearrangements occur frequently.

The development of this novel method is timely. The 1000 Genomes Project was launched in 2008, as an international effort to sequence the genomes of 2000 individuals across geographic and ethnic regions to catalog human genetic variation. Sebat's team along with many other groups has contributed to the production and analysis of these data.

This innovation improves the detection of structural variants from whole genome sequence data, which will lead to improved sensitivity to detect disease-causing CNVs.

"Sensitive and accurate detection of copy number variants using read depth of coverage" can be found online at http://genome.cshlp.org/content/early/2009/08/05/gr.092981.109.long. The full citation is: Seungtai Yoon, Zhenyu Xuan, Vladimir Makarov, Kenny Ye and Jonathan Sebat. Support for this work was provided by the National Human Genome Research Institute, part of the National Institutes of Health.

Cold Spring Harbor Laboratory (CSHL) is a private, not-for-profit research and education institution at the forefront of efforts in molecular biology and genetics to generate knowledge that will yield better diagnostics and treatments for cancer, neurological diseases and other major causes of human suffering.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>