Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL researchers identify gene that helps plant cells keep communication channels open

19.02.2009
GAT1 encodes an enzyme that maintains flow of information through transport channels

Plant cells communicate via microscopic channels called plasmodesmata that are embedded in their cell walls. For the stem cells in the plants' growing tips, called "meristems," the plasmodesmata are lifelines, allowing nutrients and genetic instructions for growth to flow in.

Developmental and environmental cues trigger changes in the structure of the tiny channels, thereby altering the flow of traffic through them. The genes and molecular pathways of the plant cell that respond to these cues, and the mechanisms that control channel structure and cell-to-cell traffic are, however, mostly unknown.

To identify these genes, a team of researchers led by Professor David Jackson, Ph.D., at Cold Spring Harbor Laboratory (CSHL), devised a method to find mutant cells whose channels were blocked to traffic. The experiments have revealed a gene called GAT1 (pronounced gate-one), which instructs cells to produce an enzyme found only in meristems, the stem-cell rich tip of the plant where new growth takes place. The enzyme improves the flow of traffic through plasmodesmata by acting as an antioxidant, a type of molecule that relieves cellular stress.

"This discovery is one of the first examples of using genetics to understand how plant cells communicate through plasmodesmata," says Jackson, whose lab at CSHL is devoted to the study of plant genetics. "Our study suggests a mechanism through which plant cells can adjust trafficking in these channels through the various stages of development." The team's findings will be published in the Feb 17th issue of Proceedings of the National Academy of Sciences.

GAT1 keeps callose at bay

As plants develop, growth signals and environmental cues such as damage or stress trigger overproduction of a substance called callose. Although callose is a normal structural component of cell walls in plants, excess callose accumulates and forms obstructive clumps that plug the plasmodesmata and impede the flow of traffic through the channels.

Restricting flow can be beneficial in some instances, such as when damaged parts need to be closed off or virus-infected cells need to be quarantined. But flow blockage can be fatal too, especially when it happens in meristems.

"Meristems that are blocked and thereby starved of nutrients won't give rise to daughter cells and spawn new organs, thus stunting the plant's growth," explains Jackson. "What we've found now is probably the mechanism that normally prevents blockages from occurring in these stem cells."

Jackson's team has found that plants stave off callose accumulation and keep the channels open by turning on the GAT1 gene in their stem cells. Seeds in which this gene failed to work were observed by the CSHL team to give rise to seedlings that barely survived more than two weeks, despite forming intact roots and an intact phloem – the main transport artery that carries nutrients and other supplies to the meristems.

The mutants even had intact meristems that had developed the required numbers of transport channels. These channels, however, were functionally defective, as the pile-up of callose narrowed them, making the passage of nutrient molecules impossible. The CSHL scientists were able to reverse this defect by re-introducing a functional GAT1 gene into mutant plants. When the GAT1 gene was turned on, the production and accumulation of callose decreased.

GAT1 counters oxidative stress

One of the distress signals that spur cells to synthesize callose are oxygen free radicals – the same cell-damaging molecules that have gained notoriety as a major cause of cell death and aging. In mutant plant seeds that lack a functional GAT1 gene, stem cells brim with high levels of these free radicals and other toxic ions, collectively known as reactive oxygen species (ROS).

This ROS threat, according to Jackson's team, is normally counter-balanced by GAT1. The CSHL scientists found that this gene encodes an enzyme called thioredoxin-m3, which they found only in the meristems, as well as in the tissues dedicated to transport. There, it acts as an antioxidant – a molecule that slows or prevents the formation of ROS.

Thioredoxin-m3 is a member of a large family of small proteins that are ubiquitous in plant and animal cells, and are biochemical workhorses that meddle in multiple metabolic processes. They consequently have an impact on numerous cellular events, including stress responses, cell death, and gene expression.

In addition to protecting plants against oxidative damage, as the CSHL scientists have shown, thioredoxin-m3 and its cousins might have other specific functions in different stages of plant development in different tissues and under different physiological conditions. Knowing the diverse functions of these proteins may help in engineering plants that are drought- and heat-tolerant.

Discovering the role of thioredozin-m3 in cell-cell traffic within meristems has already provided one such pay-off. Jackson's group found that increasing the expression of GAT1 in plants caused them to take longer to produce flowers and enter senescence – the period of old age. "People are generally interested in controlling senescence for commercial purposes such as growing plants that last longer or flowers that stay fresh longer," explains Jackson. "Our results suggest that manipulating GAT1 expression in plants can be one way of achieving this," he says.

Hema Bashyam | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>