Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL neuroscientists identify class of cortical inhibitory neurons that specialize in disinhibition

07.10.2013
Inhibitory neuron type found to specifically suppress activation of other inhibitory neurons in cerebral cortex

The cerebral cortex contains two major types of neurons: principal neurons that are excitatory and interneurons that are inhibitory, all interconnected within the same network.

New research now reveals that one class of inhibitory neurons – called VIP interneurons -- specializes in inhibiting other inhibitory neurons in multiple regions of cortex, and does so under specific behavioral conditions.

The new research finds that VIP interneurons, when activated, release principal cells from inhibition, thus boosting their responses. This provides an additional layer of control over cortical processing, much like a dimmer switch can fine-tune light levels.

The discovery was made by a team of neuroscientists at Cold Spring Harbor Laboratory (CSHL) led by Associate Professor Adam Kepecs, Ph.D. Their research, published online today in Nature, shows that neurons expressing vasoactive intestinal polypeptide, or VIP, provide disinhibition in the auditory cortex and the medial prefrontal cortex.

The researchers used molecular tagging techniques developed by team member Z. Josh Huang, a CSHL Professor, to single out VIP-expressing neurons in the vast diversity of cortical neurons. This enabled Kepecs' group, led by postdocs Hyun Jae Pi and Balazs Hangya, to employ advanced optogenetic techniques using color-coded laser light to specifically activate VIP neurons. The activity of the cells was monitored via electrophysiological recordings in behaving animals to study their function, and in vitro to probe their circuit properties.

These VIP neurons are long sought "disinhibitory" cells: they inhibit other classes of inhibitory neurons; but they do not directly cause excitation to occur in brain. Dr. Kepecs and colleagues propose that the disinhibitory control mediated by VIP neurons represents a fundamental "motif" in cerebral cortex.

The difference between neural excitation and disinhibition is akin to the difference between hitting the gas pedal and taking your foot off the breaks. Cells that specialize in releasing the brakes, Dr. Kepecs explains, provide the means for balancing between excitation and inhibition. Kepecs calls this function "gain modulation," which brings to mind the fine control that a dimmer switch provides.

The team wondered when VIP neurons are activated during behavior. When, in other words, is the cortical "dimmer switch" engaged? To learn the answer, the scientists recorded VIP neurons while mice were making simple decisions, discriminating between sounds of different pitches. When they made correct choices, the mice earned a drop of water; for incorrect choices, a mild puff of air. Surprisingly, the team found that in auditory cortex, a region involved in processing sounds, VIP neurons were activated by rewards and punishments. Thus these neurons appeared to mediate the impact of reinforcements and acted to "turn up the lights" on principal cells, to use the dimmer-switch analogy.

"Linking specific neuronal types to well-defined behaviors has proved extremely difficult," says Kepecs. These results, he says, potentially link the circuit-function of VIP neurons in gain control to an important behavioral function: learning.

The research described in this release was supported by grants from: NIH NINDS; the Klingenstein, John Merck, and Sloan Foundations; the Swartz Foundation and Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development; The Robert Lee and Clara Guthrie Patterson Trust Postdoctoral Fellowship and Human Frontier Science Program.

"Cortical interneurons that specialize in disinhibitory control" appears online ahead of print in Nature October 6, 2013 at 1pm ET. The authors are: Hyun-Jae Pi, Balázs Hangya, Duda Kvitsiani, Joshua I. Sanders, Z. Josh Huang and Adam Kepecs. The paper can be obtained at: http://dx.doi.org/.10.1038/nature12676

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit http://www.cshl.edu.

Written by Peter J. Tarr, Ph.D.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>