Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystalizing the foundations of better antihistamines

21.11.2011
Minor differences in receptor structures account for variation in the selectivity and side effects of antihistamine drugs

Researchers in Japan have solved the structure of a complex between the antihistamine drug doxepin and its target receptor histamine H1 receptor (H1R)1. Led by So Iwata of Kyoto University and the RIKEN Systems and Structural Biology Center in Yokohama, the team’s findings should aid the development of better treatments for allergies and inflammation.


Figure 1: The crystal structure of H1R with bound doxepin, showing the position of tryptophan and phosphate. Copyright : 2011 So Iwata

Histamine, which is released by mast cells of the immune system, is an important mediator of allergic and inflammatory reactions. It exerts its effects by activating cell-surface receptors, thereby triggering cell signaling events. Of the four known human histamine receptor types, H1R is expressed by various tissues, including airways, the vasculature, and the brain.

Pharmacologists have developed various antihistamine drugs that interfere with histamine–receptor interactions. “Many of us will have taken antihistamines to alleviate the symptoms of hay fever, for example, or to stop the swelling and itchiness caused by insect bites,” Iwata says.

Iwata and his collaborators solved the structure of H1R with bound doxepin using x-ray crystallography. Like all proteins, H1R is composed of amino-acid building blocks. The amino acid tryptophan is found at a particular position in H1R and is known to be important for receptor activation. The researchers revealed that doxepin sits deep within a binding pocket in the receptor, where it interacts directly with this key amino acid (Fig. 1), helping to explain its pharmacological activity.

Doxepin was one of the first antihistamines that effectively blocks histamine receptor activation. Unfortunately, however, these drugs also bind other related receptors. “This low selectivity along with their ability to enter the brain means that these first-generation drugs have considerable side effects such as sedation, mouth dryness, and heart arrhythmias,” explains Iwata.

The researchers’ structural findings suggested that the low selectivity of doxepin is due to the hydrophobic (‘water hating’) nature of the binding pocket, a characteristic found in other receptors to which the drug binds. However, they found that the binding pocket of H1R has a distinctive region occupied by the negatively charged ion phosphate. Through molecular modeling, they demonstrated that the second-generation drugs such as olopatadine would interact with this region, which is not conserved in other related receptors. This explains why these drugs are more selective and have fewer side effects compared with doxepin.

“Our findings demonstrate how minor differences in receptors affect drug selectivity and will be useful in the development of the next generation of antihistamines,” says Iwata.

Reference:
Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Cherezov, V., Liu, W., Han, G.W., Kobayashi, T., Stevens, R.C. & Iwata, S. Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65–70 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>